ai技术三种类型?

bdqnwqk1个月前基础9

1) 认知AI (cognitive AI)

认知计算是最受欢迎的一个人工智能分支,负责所有感觉“像人一样”的交互。认知AI必须能够轻松处理复杂性和二义性,同时还持续不断地在数据挖掘、NLP(自然语言处理)和智能自动化的经验中学习。

现在人们越来越倾向于认为认知AI混合了人工智能做出的最好决策和人类工作者们的决定,用以监督更棘手或不确定的事件。这可以帮助扩大人工智能的适用性,并生成更快、更可靠的答案。

2) 机器学习AI (Machine Learning AI)

机器学习(ML)AI是能在高速公路上自动驾驶你的特斯拉的那种人工智能。它还处于计算机科学的前沿,但将来有望对日常工作场所产生极大的影响。机器学习是要在大数据中寻找一些“模式”,然后在没有过多的人为解释的情况下,用这些模式来预测结果,而这些模式在普通的统计分析中是看不到的。

然而机器学习需要三个关键因素才能有效:

a) 数据,大量的数据

为了教给人工智能新的技巧,需要将大量的数据输入给模型,用以实现可靠的输出评分。例如特斯拉已经向其汽车部署了自动转向特征,同时发送它所收集的所有数据、驾驶员的干预措施、成功逃避、错误警报等到总部,从而在错误中学习并逐步锐化感官。 一个产生大量输入的好方法是通过传感器:无论你的硬件是内置的,如雷达,相机,方向盘等(如果它是一辆汽车的话),还是你倾向于物联网(Internet of Things)。蓝牙信标、健康跟踪器、智能家居传感器、公共数据库等只是越来越多的通过互联网连接的传感器中的一小部分,这些传感器可以生成大量数据(多到让任何正常的人来处理都太多)。

工业人工智能的关键技术



(1)硬件


人工智能必须依靠算力、算法和数据,这些需要硬件为基础,必须具备专门的图像、语音等处理能力强、运算速度高的硬件。在分散处理、现场传感检测时,通常采用专门的人工智能(AI)芯片作为底层硬件,通常称为边缘计算网关。AI芯片按架构体系分为通用芯片CPU和GPU(图像处理单元)、半定制芯片FPGA、全定制芯片ASIC和模拟人脑的新型类脑芯片;按照应用场景可分为训练芯片、推断芯片、终端计算芯片等。人工智能先采用训练芯片训练数据得出核心模型,接着利用推断芯片对新数据进行判断推理得出结论,模型和推理也可以从已有的SDK(软件工具开发包)中获取,终端计算芯片主要采用简单实时性能的边缘计算控制输出。


(2)传感


人工智能场景中面对丰富多样和大量的各种数据及相关技术,其中绝大部分数据来源于传感器。传感器能将被测量的各种信息转变成相关数字信号,通常需要将电量、物理量、生物量、视觉、味觉、听觉等进行感知,涉及到感知的精度、速度等。一种新型传感器的发明,往往可以开发出相应的仪器装置。传感器分为常规传感器和智能传感器:常规传感器可以直接采集转换处理压力、温度、流量、电压等信号;智能传感器是具有信息处理功能的传感器。智能传感器带有微处理机,具有采集、处理、交换信息的能力,是传感器集成化与微处理机相结合的产物。与一般传感器相比,智能传感器通过软件技术可以实现低成本、高精度的信息采集,具有编程自动化、功能多样化等显著特点,已广泛应用于各种视觉、听觉、物理量和电量等传感检测。


(3)检测


工业人工智能系统的各个环节涉及供应链、产品生产质量、设备状态、能耗、生产环境等,这些需要大量的生产前期各种基础、生产物流、设备和环境等外界状态感知数据收集,并进行数据融合分析。这些检测的精度、速度、可靠性、分析能力等性能以及价格决定了生产应用的基础。目前成品和部件从离线集中式检测,逐步转变为加工在线、实时、嵌入到生产线及设备内部的检测;从独立的感知和检测转变为多传感器、多元异构数据的融合分析;从当前数据状态转变为数据标准化和溯源。检测延伸就包含了诊断,当生产过程异常导致产品质量下降或者事故时,利用传感器采集关键设备、生产线运行以及产品质量等获得各种智能检测数据,进行自动特征提取,采用大数据分析、深度学习等方法进行高精度智能诊断及溯源。


(4)数据


人工智能是建立在强大数据分析基础上的,现在计算机的大容量、高速运算能力和网络云平台给大数据应用提供了极大的可行性和便利性。大数据通常用来形容各行各业运行过程中发生的大量不同时序、多元异构的数据,往往看起来这些数据关联性不够紧密,在关系型数据库中分析时需要花费大量时间和资源进行处理。大数据不只是数据量大,而且数据种类多。要求实时性强。数据所蕴藏的价值大。各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,需要搜索、处理、分析、归纳、总结其深层次的规律,获得规律性、有用的数据。


(5)建模


建模是认识生产过程对象和控制方法的最基本环节,不同产品、生产过程和控制要求涉及的模型差异较大,甚至难以找到相关的模型。特定模型包含工业生产过程的机制与知识,表达了生产设备、工艺参数、原材料和产品质量效率间的映射关系,设备或关键部件的退化机制,产线运行状况和工序之间的耦合关系。人工智能控制对象更加复杂和多样,往往是多输入多输出的多变量系统、非线性系统、时变系统。要求控制系统更快、精、复杂时,必须采用状态空间法、离散模型、人工智能等理论进行建模和控制。


(6)决策


决策包括优化、调度和控制等。由于产品、工艺和设备等不同,决策的方式差别很大。复杂工业生产通常由多工序、多台套设备和不同加工要求组成,涉及实时市场信息、生产条件以及运行工况,企业目标、计划调度、运行指标、生产指令与控制指令一体化优化等,需要协同企业管理者和生产管理者的知识并进行智能化处理。以ERP和MES变革为人机合作的管理与决策智能化系统,利用监测设备和产线运行状态的数据,借助智能优化算法,协同调度各个生产工序,控制相关的生产设备和工艺环节,实现生产全流程的产品质量、产量、消耗、成本等综合生产指标控制,保证生产全流程的整体优化运行决策。自主智能控制系统感知生产条件变化,相互协同,解决多目标冲突、干涉和多尺度现象,兼顾各种因素和权重影响,制定相应的优化决策目标,实现制造与生产全流程全局优化。


(7)预测


预测技术分为模型方法和数据驱动方法,在预测性维护、需求预测、质量预测等方面应用广泛。预测大多用于智能制造中设备维护,但是预测对工业生产整体或者其他关键环节的作用更加重要,比如产品成本价格和质量的趋势、产品原材料成本和质量的趋势、产品销售方式和市场趋势等,这些比起设备维护的预测可能更加重要。比如最近缺芯事件对 汽车 产业的影响、原材料涨价对产品的影响等,其影响远远超过制造产品效率的提升。大数据技术、云服务技术和人工智能技术的快速发展促进了预测技术不断提升。


预测性维护可利用工业设备运行数据和退化机制经验知识,预测设备剩余正常工况使用时间并制定维修策略,从而实现高效安全运行。需求预测根据厂商 历史 订单数据、市场预测及生产线运行状况,调节原料库存、指导生产出货进度,进行风险管理并减少生产浪费。质量预测通过产线、原料状态及相关生产数据分析产品质量,并将生产流程调整为最佳产出状态以避免残次品,数字孪生技术可以有效促进质量预测。