人工智能分析平台建立的目标?

bdqnwqk1个月前基础15

(1)近期目标:近期目标的中心任务是研究如何是计算机去做那些过去只有靠人的智力才能完成的工作。主要研究依赖于现有的计算机去模拟人类某些智力行为的基本理论、基本方法

(2)远期目标:探讨智能的基本机理,研究如何利用自动机去模拟人的某些思维过程和智能行为,甚至做的比人还要好。

人工智能分析平台建立目标是?

可分为两个阶段:(1)近期目标:近期目标的中心任务是研究如何是计算机去做那些过去只有靠人的智力才能完成的工作。主要研究依赖于现有的计算机去模拟人类某些智力行为的基本理论、基本方法。(2)远期目标:探讨智能的基本机理,研究如何利用自动机去模拟人的某些思维过程和智能行为,甚至做的比人还要好。

九个最终目标(从研究内容出发):理解人类的认识、有效的自动化、有效的智能拓展、超人的智力、通用问题求解、连贯谈、自治、学习、储存信息。

大数据智能分析有哪些能力?

一、多源大数据的采集和处理能力


只有实现对大量不同结构的原始数据准确、实时的采集,并实现对不同结构数据的融合标准化处理,才能保证大数据智能分析的源头“正本清源”。


二、数据挖掘算法能力


数据挖掘和算法将集群、分割、孤立的分析,通过内部探讨和挖掘,通过各类工具,能够从文档、照片等非结构数据中提取智能数据信息,解决好数据量和速度的问题,成为大数据智能分析的内核助力。


三、预测分析能力


数据挖掘算法让数据分析能够更好的理解数据,通过建模对数据挖掘结果进行可预测性的判断尤为重要。可以说,预测分析能力是大数据智能分析的本身要义。


四、数据质量管理能力


通过对不同平台、不同结构、不同类型的有效智能管理和实践,从而构建合理的不同类型的数据库,是进行大数据智能分析的关键。


五、可视化能力


数据可视化是大数据智能分析最基本的要求,通过可视化可以直观的展示数据,让数据动起来,让数据自己说话。


六、智能分析技术产品化能力


数据产业发展至今,数据分析技术已不再是护城河。未来数据是竞争要点,应用场景是关键,当务之急是技术服务化、服务平台化、平台产品化,让智能分析技术尽快实现商业化落地。


关于大数据智能分析有哪些能力,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。