如何应对AI (人工智能)?
说到未来,很多人担心人类会被人工智能取代。敢于带人类去火星的传奇企业家埃隆·马斯克预计,在2030-2040年,人工智能将取代人类。那我们该如何面对人工智能,才不被淘汰?
为此,即刻商业采访了3位国内商业科技大咖以及国际新锐历史学家、《人类简史》和《未来简史》的作者尤瓦尔·赫拉利。今天先来看看微软全球资深副总裁、微软亚洲研究院院长洪小文的看法。
纵观人类历史,人一直和自己造出来的机器共生存。所以,未来的常态是人和人工智能共存,人工智能+人类智能,即AI+HI。
而人类和人工智能共存有两种状态。
一是,人工智能帮人类做分析,协助人类做决定。比如一些封闭系统的重复性工作,像电梯维修,人工智能可以自己做决定。但这跟取代人类做决定是两回事。
二是,人工智能协助人类做决定。碰到人生中的重大事情或者商业的重大决策,人工智能可以做彻底的分析,但最后还需要人做出最后的决定。
每次技术进步都会带来一些负面影响,比如阶层分化。人类和人工智能共存的同时,如何应对阶层分化?
洪小文的观点是,阶层分化是难免的。有钱有资源的人总是比一般人先享用到最新技术,但以下两点可以缓解阶层分化的问题。
人工智能技术的透明化,开放技术源,OpenSource,让更多人了解如何驾驭这个技术;人工智能技术的普及化,让更多人享用AI技术。
学习人工智能AI需要哪些知识?
关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。
人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用--机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统等。
人工智能(Artificial Intelligence)是研究解释和模拟人类智能、智能行为及其规律的一门学科。其主要任务是建立智能信息处理理论,进而设计可以展现某些近似于人类智能行为的计算系统。AI作为计算机科学的一个重要分支和计算机应用的一个广阔的新领域,它同原子能技术,空间技术一起被称为20世纪三大尖端科技。
人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。
常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。
问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。
搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。
机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。
知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。