学量子力学需要什么数学和物理基础?

bdqnwqk3个月前基础9

数学:先要精熟函数,微积分,拓朴
物理:经典力学、电动力学、波动方程,
可以了解凝聚态物理,相对论,对理论物理要有基础。
大虾们都讲了,菜鸟不敢多言。
阳兄,其实,说起来易,做起来难,这还得看你的身份和现实状况。

量子物理三大理论是什么?

量子力学三大定律为:量子力学第一定律超光速,量子力学第二定律宇宙无引力,量子力学第三定律宇宙神学。量子力学主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。它与相对论一起构成现代物理学的理论基础。

状态函数

在量子力学中,一个物理体系的状态由状态函数表示,状态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;

测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其状态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期望值由一个包含该算符的积分方程计算。 (一般而言,量子力学并不对一次观测确定地预言一个单独的结果。

学量子力学需要什么样的数学基础?

风零/mg6级可以从实变函数和泛函分析学起。学习实变函数,有利于你建立现代数学的一些基本观念(如函数类)掌握一些基本方法以及积累一些素材。学过实变函数就可以进入现代数学的基础,泛函分析了。只有学过泛函分析,你才能对(非相对论)量子力学有清楚的认识。这时量子力学才不是形式的而是严格的。实变函数和泛函分析的书最好的当属《REAL AND ABSTRACT ANALYSIS》 为了准备学微分几何,还要学一些拓朴和代数。这只是准备概念,不必费太多时间。代数可以看蓝以中的《高等代数教程》,这书用近式代数的语言将古典的矩阵和线性空间的理论加以重复,对于理解抽象的代数概念很有好处。拓朴可以看《拓朴学基础》。这书上的习题狂多,不过只要第一章会了其它章节很简单。 学过泛函分析和拓朴就可以学真正在发展物理理论中有用的微分几何了。微分几何内容十分庞杂,从最基础的导数的值等于切线斜率,一直到函数空间中的几何学。这些东西要在短时间内学会很不容易,不过也有迹可寻。首选的入门书是陈维桓的《微分几何基础》这书不需要高深的基础,但是却是微分几何的入门。学过之后就可以看陈省身的《微分几何》了。这两本书读过以后再回头读《数学物理中的微分形式》,学习如何应用这些数学。《数学物理中的微分形式》算不上严格的数学书,但是里面对如何使用数学却讲得很好。如果觉得李群和李代数有用,还可以专门看看这方面的书。不过我建议找一本以特殊函数为工具,介绍李群的书。看过以后你就知道Bessel函数等那些在数理方法中学过的东西是何等重要。它们直接是对称性的反映,只不过那时你还小并没有认识这一点。学过这以后你知道量子力学真正关心的是什么了。原来量子力学做来做去是一种关于对称的理论。在这一理论中作为群的表示的基的波函数是次要的,而群本身和代表它的特征值才重要,而这些被物理量正是特征值。 门(实际是一门)学问可以说是高深莫测.就是对于一个内功小成的人而言,它们的数 学也是你所不掌握的.这两门学问的深度远远超过我 们今天的数学所能达到的范畴. 量子力学实际上是一种量子理论.它所包含的内容极广,从大学三年级学生学的一维 无穷神势井,到超弦可以说都是量子理论.量子力学大致分两个层次,非相对论的量子 力学以及量子场论和量子规范场论.对于前者P.A.M DIRAC在1937年写过著名的