库伦定律和万有引力定律谁比较早

bdqnwqk4个月前问题10

万有引力较早,是牛顿发明的,牛顿虽然发现了万有引力,但始终没有推算出万有引力的“引力系数”,库伦定律是后来的科学家库伦发明的,他完成了牛顿未完成的事业,计算出了“引力系数”,F=k*(q1*q2)/r^2 ,其中k就是库伦常数。

开普勒三大定律怎么联系起来理解 还有万有引力公式怎么理解啊?

开普勒第一定律(轨道定律):每一行星沿一个椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。
开普勒第二定律(面积定律):从太阳到行星所联接的直线在相等时间内扫过同等的面积。
开普勒第三定律(周期定律):所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。

实际上这三个定律适用的范围不同,不是可以互相推论的

万有引力是这样 F=m*KM/R2 可以看成F=m*a的形式 KM/R2 为加速度a
不难看出万有引力和作用物体的质量成正比,和两者的距离成平方反比,而K则是一个常数,称为引力常数,是这个宇宙的基本性质常数之一

万有引力是怎么样被证明的?

苹果的故事

苹果落地的故事早已脍炙人口。根据牛顿的信件,可以证明在他年轻的时候(1665—1666年)因瘟疫在乡下居住时,确曾研究过数学和天文学,并思考过引力问题,他写道:

“在1665年的开始,我发现计算逼近级数的方法,以及把任何幂次的二项式归结为这样一个级数的规则。同年5月间,我发现了计算切线的方法,……11月间发现了微分计算法;第二年的1月发现了颜色的理论,5月开始研究积分计算法。这一年里我还开始想到重力是伸向月球的轨道的,同时在发现了如何来估计一个在天球内运动着的天体对天体表面的压力以后,我还从开普勒关于行星的周期是和行星轨道的中心距离的3/2次方成正比的定律,推出了使行星保持在它们的轨道上的力必定要和它们与它们绕之而运行的中心之间的距离的平方成反比例。而后把使月球保持在它轨道上所需要的力和地球表面上的重力作了比较,并发现它们近似相等。所有这些发现都是在1665年和1666年的鼠疫年代里作出来的。”

这封信写于1714年,二百多年来,人们都是根据这封信以及其他一些文献资料来说明牛顿的创造经过的。这封信虽然没有提到苹果的故事,但是说明至少在《原理》发表22年以前,牛顿就已经开始了引力问题的思考。

人们要问:既然在1665—1666年牛顿就已经推算出了引力的平方反比定律,为什么迟了二十多年才发表?过去流传了种种解释。

有人说,牛顿当时推算的结果由于地球半径的数据不够准确误差过大,出于谨慎等待了20年。

有人说,牛顿的推算只是证明了圆形轨道的运动,而行星的轨迹是椭圆,他当时无法计算,只有等到他本人发明了微积分之后,才能有效地解决这个问题。

也有人说,牛顿观察苹果落地的故事也许确有其事,因为牛顿晚年至少向四个人讲到这件事,而他当时也确在思考引力问题。他肯定想到要把重力延伸至月球。

还有人说,牛顿1714年的那封信有意歪曲历史,是故意编造的,同样,苹果落地的故事,也是出自牛顿本人和他的亲属的编造,他们大概是出自辩护优先权的需要。

长期以来,(牛顿的《原理》已经发表整整三百年了),有关牛顿的著作甚少。牛顿的手稿一直被搁置一边,既未得到研究,也未公开发表,直到近几十年,对牛顿的研究才活跃起来,牛顿的书信和手稿陆续整理出版,研究牛顿的书刊不断问世,出现了好几位以研究牛顿闻名于世的科学史专家以及他们的学派。他们对过去的一些误传进行了考证,对《原理》一书的背景作了系统的研究,对牛顿的生平和创造经过进行了分析。现在我们可以更全面地、更正确地也更深刻地阐述牛顿的工作了,这里仅就牛顿发现万有引力定律的经过作些介绍,读者也许会发现,这一经过要比苹果落地的故事更富有戏剧性。