量子化学的基础是“物理化学”么
量子化学(quantum chemistry)是理论化学的一个分支学科,是应用量子力学的基本原理和方法研究化学问题的一门基础科学。
1.物理化学是本科科目,量子化学是研究生科目
2.物理化学主要研究的包括化学热力学、化学动力学、电化学、胶体和表面化学、统计热力学等等,量子化学包括量子力学基础、简单应用、原子结构、近似方法、分子结构、群论基础、群论应用、分子光谱、电子相关、价键理论、密度泛函理论以及量子化学计算简介等
3.也就是说物理化学是量子化学的基础,量子化学研究的更接近原子,分子方面
量子物理在哪些方面有非常重要的作用??
量子物理实际上包含两个方面.一个是原子层次的物质理论:量子力学;正是它我们才能理解和操纵物质世界.另一个是量子场论,它在科学中起到一个完全不同的作用.量子:某些物理;量不能连续而只能以某一最小单位的整数倍发生变化,这个最小单位叫做各该量的量子.量子力学:研究微观离子运动规律.微观粒子有明显的波粒二象性(波动性,粒子性》,其运动规律是研究宏观物体运动规律的理论不能解决的.量子力学是近代理论物理的基础之一.在量子力学研究的基础上人们发展了半导体,原子能和激光等现代技术.
要学量子力学,需要先学什么基础呢?
对于许多人来说,也许量子力学比相对论更为有用。后者一般用于研究基本粒子的产生和相互转化以及大尺度的时空结构,但对于20世纪人类的生产生活,原子层次的世界显得更为重要。30年代,量子力学用于固体物理,建立了凝聚态物理学,又用于分子物理,建立了量子化学。在此之上,材料科学、激光技术、超导物理等学科蓬勃发展,为深刻影响20世纪人们生活方式的计算机技术、信息技术、能源技术的发展打下了基础。在20世纪上半期,量子力学深入到微观世界,发展了原子核结构与动力学理论,提出了关于原子核结构的壳层模型和集体模型,研究了原子核的主要反应如α、β、γ嬗变过程。在天体物理中,必须要用到量子力学。对于那些密度很大的天体,如白矮星、中子星,当核燃料耗尽时,恒星的引力将使它坍缩,高密度天体的的费米温度很高,比恒星实际温度高得多,白矮星的电子气兼并压和中子星的中子兼并压抗衡了引力,此时量子力学效应对于星体的形成起了决定性的作用。对于黑洞,其附近的狄拉克真空正负能级会发生交错,因此有些负能粒子将可能通过隧道效应穿透禁区成为正能粒子,飞向远方。黑洞的量子力学效应很有意义,值得研究。尽管量子力学取得了巨大成功,但是由于相对于牛顿力学而言,量子力学与常识的决裂更为彻底,因此对于量子力学的基础仍旧存在着许多争论,正如玻尔所说:“谁不为量子力学震惊,谁就不懂量子力学。”爱因斯坦和玻尔在20世纪上半期关于量子力学是否自恰与完备展开了大讨论,引发了一系列关于量子力学基础的工作,如隐变量理论、贝尔定理、薛定谔猫态实验等,这些工作使得我们看到理解量子力学的艰难。量子力学的应用,一方面让我们感觉到现实世界丰富多彩的离奇特性,另一方面反过来也促进我们对量子力学基础的理解。20世纪下半期,量子力学在基础和应用研究上又焕发出了青春。对超导本质、真空的卡西米尔效应、分数与整数量子霍尔效应、A-B效应和几何相因子、玻色-爱因斯坦凝聚和原子激光等的研究,极大地丰富了人们对物理世界的认识,而对这些效应和技术的研究,必将对21世纪的科学进步产生深远意义的影响。