万有引力常量的是如何得到的?

bdqnwqk6个月前问题11

1,尽可能地增大了T型架连接两球的长度使两球间万有引力产生较大的力矩,使杆偏转
2,尽力的增大弧度尺与系统的距离使小镜子的反射光在弧线上转动了较大角度
引力常量G=6.67*10^-11
演示卡文迪许扭秤实验
1789年,英国物理学 家卡文迪许(H.Cavendish)利用扭秤,成功地测出了引力常量的数值,证明了万有引力定律的正确。 卡文迪许解决问题的思路是,将不易观察的微小变化量,转化为容易观察的显著变化量,再根据显著变化量与微小量的关系算出微小的变化量
实验原理
卡文迪许用一个质量大的铁球和一个质量小的铁球分别放在扭秤的两端。扭秤中间用一根韧性很好的钢丝系在支架上,钢丝上有个小镜子。用激光照射镜子,激光反射到一个很远的地方,标记下此时激光所在的点。
用两个质量一样的铁球同时分别吸引扭秤上的两个铁球。由于万有引力作用。扭秤微微偏转。但激光所反射的远点却移动了较大的距离。他用此计算出了万有引力公式中的常数G。
此实验的巧妙之处在于将微弱的力的作用进行了放大。
尤其是光的反射的利用

在卡文迪许的实验中利用了一个扭秤,典型的设计可由一根石英纤维悬挂一根载有质量为m及m的两个小球的杆而组成,如图3.6a所示。每个小球距石英纤维的距离r相等。当一个小的可测量的扭矩加在这个系统上时,在石英丝上可以引起扭转,记下这个扭转值可以标定扭秤。我们可以利用这个扭矩,它是由具有恒定的、作用力已知的弹簧在m的位置上施加一个水平的力而组成。
如果质量为m'的两个物体分别位于与质量为m的两个小球的水平距离很小的位置上,我们可以观测到石英丝的旋转,如右下图所示。我们可以决定m'与M距离r,然后求施加在杆的端点的水平方向上的力,由此确立加在石英丝的力矩,从而求得万有引力的大小.
从质量m的测量所得的偏离,再根据上面所说到的,由石英丝旋转大小而取得的扭秤的标定,我们可以决定F之值。由于我们可以测量F,r以及m, m',现在在方程F = (G * m * m')/(r^2) 中除了G以外,所有量都是已知的,于是可从方程直接求出G,其值为G=6.7×10^(-11) (N * m^2)/(kg^2)。(A^B 表示A的B次方)

万有引力常数是怎样球出的?

万有引力常数G的精确测量不仅对于揭示引力相互作用的性质非常关键,而且对于理论物理学、地球物理学、天文学、宇宙学以及精密测量技术等领域的研究都具有重要的意义,因而得到理论和实验工作者的广泛关注。自Cavendish测出万有引力常数的第一个实验值以来,人们对此进行了大量的实验研究,并给出了近300个G的测量结果。
HUST—99扭秤周期法测G实验。扭秤可以绕着悬丝在水平面内自由转动,以探测作用于检验质量上水平方向的待测外力作用。作为一种高灵敏度的弱力检测工具,精密扭秤已被广泛应用于万有引力和电磁力等弱力的精密测量以及材料特性研究等诸多研究领域。扭秤周期法测量引力常数G的原理为:通过比较作为检验质量的扭秤系统在吸引质量两种不同引力场配置下的周期变化而测得G值。一根直径25长度为513mm的钨丝悬挂两32g的铜球检验质量构成扭秤,扭秤系统置于真空容器中,自由震荡周期为3484秒。当两个6.25kg的圆柱体吸引质量置于一个检验质量两侧时,其周期增加到4441秒。我们实验的创新之处在于采用了长周期高Q值扭秤,并使之在一个恒温(日变化小于0.005°C)环境下工作,从而克服了扭丝滞弹性和热弹性对测G的影响。我们采用的非对称扭秤可以使得较小的吸引质量产生较大的待测信号,但是这种设计使扭秤系统易受外界干扰的影响,同时也会增加扭秤运动的非线性效应,且对扭秤运动信号的周期拟合提出了更高要求。我们的实验结果的相对精度达到105m,该测量结果被国际物理学基本常数委员会推荐的CODATA-98值所采用,并被命名为“HUST-99”。
扭秤系统周期拟合数据处理方法研究。在周期法测量引力常数G的实验中,扭秤周期的测量精度直接影响G的测量精度。扭秤的周期一般从几分钟到小时量级,周期越长,灵敏度越高。但长周期的基频高精度拟合是一件很困难的事,用传统的傅氏变换、极值序列拟合和非线性最小二乘拟合等方法难以满足实验精度的要求。周期法测G实验对扭秤运动的基频的测量精度要求很高,而对振幅和位相等的测量精度要求相对较低。根据这一具体要求,本文提出了对扭秤运动周期的单参量直接基频拟合。单参量直接基频拟合的基本思想是只给出周期的最佳估计值,而对其他参量不作任何限制,即采用仅对信号周期敏感的方差作为判据,利用最小二乘原理给出周期的最可信赖值。理论分析和数值模拟表明该方法可有效克服周期法测G实验中的主要干扰,即由于非线性效应而寄生的高次谐波振荡;由于阻尼的存在引起的扭秤运动振幅的衰减;由于扭丝的蠕变及实验环境的变化而引起的扭秤静平衡点的漂移等。单参量直接基频拟合能高精度给出信号的周期,代价是牺牲了其它参量的测量精度。因为它未对其他参量作任何限制,换而言之给出了其他参量很大的变化范围,从而有可能高精度地将周期限制在较小的范围内,这类似于量子力学中的测不准原理。此外,单参量直接基频拟合与非线性最小二乘拟合相结合,不仅可以解决余弦函数类非线性拟合的线性化问题,同时还可以给出振幅和位相等其他参数的最佳估计值。
精密扭秤特性研究。目前各小组实验测量的G值在其误差范围内不吻合,这一现象说明存在未被认识的系统误差。为了解释该现象,我们系统深入地研究了精密扭秤系统的非线性、热弹性以及滞弹性等特性,并分析了它们对测G实验的影响。精密扭秤实验的精度依赖于扭丝弹性系数K的
本文《论文实例:万有引力常数G的精确测量与扭秤特性研究_文秘114_免费文秘网》由文秘114(www.wenmi114.com)为您整理,更多文秘文章请访问: