感谢万有引力将我拉向你,,,英文怎么说

bdqnwqk6个月前问题6

感谢万有引力将我拉向你
Thank you for bringing me to you
bringing
v.
提供;带来( bring的现在分词 );促使;使朝(某方向或按某方式)移动

三角函数半角公式的推导

根据倍角公式得:
coa2a=1-2sin²α,可得
cosa=1-2sin²(α/2),可得
1-cosa=2sin²(α/2),可得
sin²(α/2)=(1-cosa)/2,可得,sin((a/2)=根号(1-cosa)/2)
cos²(α/2)=1-sin²(α/2)
所以:cos²(α/2)=1-(1-cosa)/2=(1+cosa)/2
所以:cos(a/2)=根号(1+cosa)/2
因为:tana=sina/cosa
所以:tan(a/2)=sin(a/2)/cos(a/2)
所以:tan(a/2)=根号((1-cosa)/(1+cosa))
半角公式是利用某个角(如∠A)的正弦值、余弦值、正切值,及其他三角函数值,来求其半角的正弦值,余弦值,正切值,及其他三角函数值的公式。
扩展资料:
在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对∠BAC而言,对边(opposite)a=BC、斜边(hypotenuse)c=AB、邻边(adjacent)b=AC。
六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ。
对于大于 2π 或小于等于2π 的角度,可直接继续绕单位圆旋转。在这种方式下,正弦和余弦变成了周期为 2π的周期函数:对于任何角度θ和任何整数k。
周期函数的最小正周期叫做这个函数的“基本周期”。正弦、余弦、正割或余割的基本周期是全圆,也就是 2π弧度或 360°;正切或余切的基本周期是半圆,也就是 π 弧度或 180°。
在正切函数的图像中,在角kπ 附近变化缓慢,而在接近角 (k+ 1/2)π 的时候变化迅速。正切函数的图像在 θ = (k+ 1/2)π 有垂直渐近线。这是因为在 θ 从左侧接进 (k+ 1/2)π 的时候函数接近正无穷,而从右侧接近 (k+ 1/2)π 的时候函数接近负无穷。
参考资料来源:搜狗百科——半角公式

等差数列前n项和公式的推导方法叫什么

Sn=a1+a2+a3+...+【a1+(n-1)d】
Sn=a1+(a1+d)+(a1+2d)+...+【a1+(n-1)d】①
把项的顺序反过来Sn又可写成
Sn=an+(an-d)+(an-2d)+...+【an-(n-1)d】②
①②相加
2Sn=(a1+an)+(a1+an)+(a1+an)+(a1+an)+.=n(a1+an)
∴Sn=��n(a1+an)

如何推出万有引力定律

zyg2506146, 看来也是物理系的,估计比我具有更扎实的数学基本功,但对这个问题的认识还不太清晰。

万有引力定律的确是“猜”出来的。从开普勒第三定律推导太阳和地球之间引力满足F=GMm/R^2是严格的数学结论,但并不能说明有质量的物体之间都有这样的引力。
牛顿发觉地面上,比如使“苹果落地”的力,和天体间的力,都是一种满足平方反比的力,很自然地(或许当时的历史条件下是很大胆地?)猜测,这是同一种力,并且世间万物,天体又或普通物体,都有符合F=GMm/R^2的引力。
“牛顿万有引力公式是有严格的公式推导!!”,但万有引力定律,是猜的,不是可以从其他理论推导出的。
==============================================================

当然,楼主的意思,就是进行万有引力公式的公式推导。如果还是高中生,把轨道当成圆,从开普勒第三定律出发就行了;如果严格些,按实际的椭圆轨道来推导,那是相当麻烦的,利用比耐公式,可以从轨道方程推出万有引力F(r)的形式。

=================================================================
还是先把圆形轨迹时的近似推导给出来吧。对于高中生够用了。
证明:
开普勒第三定律r^3/T^2=C(C是常数)
万有引力F,形式未知,但一定等于向心力F=mr(2π/T)^2
带入1/T^2=C/ r^3
F= mr 4π^2 *(C/ r^3)= C’* m/ r^2
因为引力的对称性F= C” * M/ r^2
所以F= GMm/ r^2 G是常数