高考结束了,对物理比较感兴趣,大学也想向物理方面发展,暑假有没有定向的计划,得以让大学学习打下基础?
物理其实比较广泛,大学里有“应用物理”这个专业,当然“工程力学”、“理论与应用力学”、“电气工程及其自动化”这样的专业其实也属于物理相关专业。文末有相关建议。大学物理对于理工科类的专业来说是必修课,公共基础课,一般在大一下学期学,不会在大一上学期直接学,因为大学物理要用到《高等数学》知识,向量叉乘运算、微积分(重积分、曲线积分等)等,虽然这些数学知识有的在高中数学学过,但是重积分在高中没学过,学习《大学物理》里的电磁场的时候就没法搞,建议先学一下《高等数学》,然后再学《大学物理》。大学物理学的范围其实比高中物理小,很多不深入学而是在相关的分支学科学习。例如:力学、电学、振动、热力学等。《大学物理》学的力学比较基础只研究刚体,不研究变形体,更详细的学习在《理论力学》《材料力学》等课程中。电学就更多了,但是《大学物理》这本书没有电路知识,但是有电磁场知识,有的专业学好几本电学相关的书。大学有的专业还需要学《机械振动学》、《热工基础》等书籍,其实这本书也是物理相关知识。大学里可以参加物理竞赛,省级的比赛,有奖金的。分为应用物理专业和其他专业分开的试卷。最重要的一点,得会熟练使用电脑,尽量早学会,不要现学现卖。很多物理实验数据需要电脑处理,还得会用电脑写实验报告。电脑在大学里得熟练使用,早用早好,不要等到大三大四再买,大一最好就买上,早用早熟练。最好早一点学会电脑绘制电路图、PCB图,有限元分析,电路仿真等。相关电脑软件:Altium Designer、ANSYS、Proteus、Multisim、Microsoft Office等。建议:1.预习《高等数学》同济第七版、《大学物理》;
2.练习使用电脑基本操作[会安装、卸载软件,会使用Microsoft Office简单处理文档(高中信息技术课其实学了一些简单操作),会使用U盘、网盘分享和获取文件,会打印文件等]。
研究一下物理竞赛或者力学,推荐舒幼生的视频
热力学有哪四条定律?
动力与粒、线、统一关系
光射规律
热从粒子角度来看,“热”是原子核外电子吸包电能时变为光子,由于光子含有热量和不同颜色的光亮,并且有规律的不停释放光与热,由于光或光线都处于空间,若不含媒介的空间光线,它会自然的从线的垂直面上,以线为中心向周围四面八方缓慢辐射热与光,它原本是正负光子结合的,它的每个辐射点即正负光子结合体,光线上以这些正负光子结合体为圆心,在光线上形成了平行甩光热圆面,圆心就是光线上的正负光子结合体,光与热在这些正负光子结合体上,向其周的四面八方均匀不停的以8次/秒的释放着光与热,最后光线只剩下一对一对的无力电子,自然脱落扔掉。光与热的释放状态形成了以正负光子结合体为圆心的平行圆面,它们的圆心就是结合上的正负光子串。
电子核能与原子核能
对于光具有照明作用;对于热它具有分开粒子功能。当光有规律的甩掉热时,这些热对于组成固态的分子具有分开作用,其规律是,先将物质分子的两样结合力即正负离子异性电相吸的电力破坏,也就是两个离子上包裹的相套电力线其中的球交电力线处在离子侧面,所以正负离子同向侧面靠近就会异性相成分子。这个分子间的吸力用热来分解,因为热遇到电力线,电力线自然就会变化为热,这是规律。通过这个规律离子与离子的其他部分电力线仍然转化为热,就这样消除微粒之间的吸力使它们变为自由的微粒成为气体的。由于任何物质都会由原子核与它的核外电子组成的,电子绕原子核转,根据任何带电粒子运动都会在其本身上与其运动轨迹中心处聚集核能,并且同时释放这些核能,形成某形状的电力线包裹在轨迹中心处,当达到饱和时自然移动出去成为自由的核能,或者仍然包裹在轨迹中心上,对别的粒子相吸成大的粒子,这就是说的是原子核上包裹的相套电力线即平行电力线和它外套的球交电力线,该电力线的产生是因为原子核外的电子运动,电子本身的形状像一个玉米穗,由于电子本身上聚集的核能起初就是在它上面包裹着的,达到饱和时吐出成为电子聚集的核能,所以说电子周围存在着比电子更小的带正电微粒绕电子转的,根据带电粒子的运动规律,所以说电子周围的正电微粒与它的轨迹中心处即电子聚集核能,又由于电子是玉米穗形状,它的外围转的多个正电微粒轨迹是近似于椭圆,由于这些在椭圆上运动正电微粒力大小不同,形成的椭圆轨迹不同 ,以最大旋转即椭圆面发射出的扁圆柱体的平行电力线 ,它的中心处的电子位置发射出的椭圆形球交电力线,这两种电力线是相套的并且包裹在电子上,当达到饱和时保持原状吐出成为自由的核能,这就是电子上聚集的核能叫电子核能。这种核能,这种核能的平行部分电力线的上下是异性电,它们自然的首尾异性相吸成串 ,这就是微小扁形椭圆体电力线构成了新的电力线,这个新电力线属于电子绕原子核转产生出来包裹在原子核上的,它的造型是原子核外围电子运动轨迹是圆形的,所以它发出的电力线是圆柱平行电力线和外套的球交电力线,这些电力线的微体构造就是前面说的扁椭圆体结合的串,它从运动的电子和电子运动轨迹中心位置发射出平行电力线和它外套球交电力线,由于原子核处于运动轨迹中心,所以发出的相套电力线包裹在原子核上,这个包裹在原子核上的相套电力线不是当核能的用的,它是用来靠电力线上的吸引力连接周围的同样粒子成为分子的,所以说原子核上包裹的电力线相吸与相斥力就是原子之间的吸力和斥力,或者说在这相套电力线范围内的分子与分子之间的吸引力,都是这个相套电力线的作用。就靠这些作用力形成物质体的。
热分开粒子规律
由于原子与原子上的同向侧面吸力电力线即球交电力线,遇到能克服它们之间电力线的热,此时电力线就会转化为热,自然取消原子与原子的相吸力和排斥力。其实对于离子它也是原子,它形成包裹的相套电力线后,原子核最外围的电子为了达到饱和,失去或得到电子形成离子,这样正离子与负离子异性相力、各离子侧面的球交电力线相吸力、离子与离子的上正下负平行电力线之间相吸或相斥,这三项作用力使离子形成分子 ,若这三种作用力的都用上组成的分子属于固体;若除用正负离子的异性电吸力外,还用离子上包裹电力线的一半力结合的分子属于液体;若只用正负离子的异性电吸力,结合的分子是气体,这就是物质的气体、液体、固体的结合原理。对于上下异性电的平行电力线与另一个离子上下异性电的平行电力线碰到大的热量转化为热,它之间的吸力自然取消,这样原子核上包裹的那些电力线全都转化为热,热就这样消除离子上包裹的相套电力线的;对于另一项正负离子之间的吸力,是原子核外电子失去或得到形成离子的显出的正负电性,此时这些核外电子早已变为光子,所以这项电力作用早已消除。所以热就这样将物质的分子,分成原子、中子、质子、夸克粒子的,当到夸克就停下,此时夸克上包裹的扭曲平行电力线和它外套的扭曲球交电力线,这个在夸克上包裹的电力线具有将热变为它本身的饱和程度,当它吐出成为自由的夸克核能,这样热通过夸克上的包裹电力线转化为饱和电力线,吐出成自由核能,这说明热通过夸克变为夸克核能,只有夸克上包裹的电力线才具有将热变为电力线的力,成为饱和的夸克核能,其余的粒子(原子、中子、质子)上包裹的电力线具有变化为热的性质,热在这些粒子起到消除电力线的作用,这是电力线转化为热的结果。
光与电的实质转化规律
由于任何物质的层层带电粒子,都具有包裹它相对应的某形状电力线。由于任何带电粒子都具有吸足它同性质电的趋势。对于电子也不例外,当包裹着电力线的电子吸足电力时即块飞状态,也就达到饱和了,此时电子变为包裹透明体的光子,这是电子变光子的规律,电子上的相套电力线与光子上的包裹透明体,也是随电子变光子进行的,也就是说粒子上包裹的相套电力线变化为光子上甩掉的热,规律是粒子上包裹的相套电力线遇上热,及时变化为热。
热分开粒子的原理
原子由于核外电子的得失形成的正负离子,即包裹原子核上面的相套电力线碰到热就会消失。由于热就是电子吸足够的电变成光子,光子上包裹透明体里的光与热,它相当于电子上包裹的相套电力线上的电力(吸力与斥力)所以在电热转化规律上,正或负电子上分别包裹的相套电力线的飞力之和(最大力)全等于转化为的该光子对释放完的光与热(正负电光子异性相吸成串为不显电性的光线,其中正负两个电子为一对即甩光点)。在物质的分子中,只要电子吸饱电力变为光子,不停的甩掉热,此时这些热与原子上的相套电力线相接触,原子上的相套电力线就会变化为热量。它的变化规律是电子变化为光子,而光子摔倒光与热,变成废电子。这里的原子核上包裹的电力线接触热,只能电力线变化为热量。对于电子上的飞力就是包裹的电力线,当电子变为光子时,它的电力线变为透明体包裹在光子上。这里的电子对应的光子,电力线对应透明体。电子变光子,电力线变透明体,透明体甩掉光与热,这就是它的变化规律,光与热又去靠近下层靠电力线吸在一起的粒子,同样的原理将它们分开。如热分开原子与原子结合力,再分开质子里的夸克与夸克结合力,都是靠热接触它们上面包裹的相套电力线,使电力线转化为光与热,所以它们在分开粒子过程中出现火红热的状态,这就是燃料着火过程,少热量的小火变为多热量的大火原因。
动力、带电粒子、核能、光、热、电力线(电)、动力线、磁力线、重力线的关系
动力用正负离子或正负夸克转化为正负离子核能或正负夸克核能,离子核能结合为离子电力线,用离子电力线来造磁力线;夸克核能结合为夸克电力线,用夸克电力线来造重力线。各种电力线和磁力线、重力线都用动力转化来的。这是动力依靠粒子造它所对应核能,核能再造它所对应的各种力线。动力依靠电子转其本身的包裹电力线,这些电力线饱和时,就变为光子,光子上包裹的透明体就是电子上包裹的电力线变成的。光子有规律的甩掉光与热,其中热能使除夸克外的所有粒子上包裹的电力线化解,并且转化为热。这就是热用粒子之间存在的异性相吸的电力,转化为热,这就是粒子间隙电力转化热。夸克上包裹的电力线,用周围邻近的热,转化为它的包裹电力线力,这就是热转化电力。所以说夸克以上稍微大些粒子间隙的电力转化热;夸克稍微近处的周围热,能转化为包裹夸克的电力线力。这就是热与电互转规律。统一起来说,动力使所有的带电粒子直接加大电力,所有的粒子上都能产生包裹的电力线,这些电力线力大时即饱和,除电子外都会移动出去,成自由核能,这些核能造成它所相对应的电力线,磁力线,重力线、和不移动核能的光子串即光线。正负电子上的包裹电力线变成透明体,包裹在正负光子上,这些正负光子异性相吸成串,这就是光线。
粒、线、热统一关系
上述表明动力对应所有的带电粒子加大电力,所有的粒子对应它的包裹电力线,即离子上包裹电力线造它的大电力线和磁力线;夸克上包裹的电力线造它的大电力线和重力线;电子上包裹的电力线造它光子上包裹透明体,含光和热的透明体,释放的热能使除夸克外所有粒子间隙电力变为热,夸克上包裹的电力线,能使所有的热变为包裹在电力线上的力。
用粒子转核能
受动力的带电粒子或运动的带电粒子,就会在带电粒子上包裹的相套电力线,达到饱和时,移动出去保持原状,成自由某粒子核能。这些自由的正负核能异性相吸成串,就是某核能电力线,粒子、核能、电力线都具有正电与负电之分。正负核能微体异性相吸成双核能体,这些双核能本身是夸克核能,它的形状为扭曲平行电力线和外套的球交电力线,这两个电力线同向侧面相吸成双扭曲相套电力线,再使它们的平行部分上下异性电相吸串,这就是重力线,磁力线是离子上部分电子做简谐运动,发出扇子形平行电力线和垂直于中间凸起的圆形的电力线,包裹在离子上,饱和时吐出成自由核能,它们的正负核能微体侧面异性相吸,成为双扇子形微体,再以它们的上下平行部分的异性电相吸成串,这就是磁力线。产生这两种力线的粒子核能都是用的动力。
动力转化核能
粒子可直接或间接受到动力而运动产生轨迹,将动力变为包裹在运动轨迹中心的某形状电力线,电力线达到饱和时移动出去,保持原状,成为自由核能。这说明“任何带电某粒子都具有将动力变为某粒子核能”。如正负电子核能、正负离子核能、正负夸克核能。
热转化夸克核能
热量遇到夸克上包裹的扭曲平行电力线和它外套扭曲球交电力线时,就会使该电力线加以充足的快速饱和,当达到饱和时移动出去,保持原状,成为自由的夸克核能。
热转包裹夸克的电力线
夸克以上的大体积带电粒子,这些带电粒子上包裹的电力线,遇到能克服这些电力线力的热量时,就会使粒子上包裹的电力线变为热量。如正负电子上包裹的椭圆形平行电力线和它外套椭圆形球交电力线;正负离子上包裹的平行电力线和它外套球交电力线;正负夸克上包裹的扭曲平行电力线和它外套扭曲球交电力线;这些电力线遇到能克服其本身电力的热量时,就会使在粒子上包裹的电力线转化为热量。
热量转夸克上的包裹电力线
热遇到夸克上的包裹电力线就会转化为所对应的正或负的电力,由于热几乎从负光子(带负电的电子转成光子)上甩掉的含有负电因素的热,又由于所有的电粒子都具有吸它同性质的电的趋势,所以这些含负电因素的热,几乎都使负夸克上包裹的电力线吸取并转化为它的电力,来充足它的电力线饱和程度,当达到饱和时吐出成自由核能。
动力接触电粒子转电力
带电粒子受到动力没有出现移动轨迹,只是使带电粒子得到动力,该带电粒子直接就会在它的受力方向中心处(动力的大小中心)发出包裹粒子的电力线,这种电力线形状几乎与粒子形状相似,这就是动力直接转化电力。
光、热、电相互转化
正负电子无论靠那种办法转化成电子的同性质电,使电子吸饱,达到饱和时变成正负光子,其中正电光子有规律的甩掉含正电的光和含正电的热;负电光子有规律的甩掉含负电的光和含负电的热,若是光线上甩掉的光与热不显电性,这是因为正负光子异性相吸成串不显电性,它甩掉的光与热也不显电性。这里的含正电因素的热转正电,用的是正夸克上包裹的正电力线;含负电因素的热转负电,用的负夸克上包裹的负电力线。热是从光子里提取的,所以热相当于光。也可以说电通过电子微粒转光(光与热);热通过夸克微粒转电;电通过离子(原子核)转热。
热力学四定律:通常是将热力学第一定律及第二定律视作热力学的基本定律,但有时增加能斯特定理当作第三定律,又有时将温度存在定律当作第零定律。一般将这四条热力学规律统称为热力学定律。热力学理论就是在这四条定律的基础建立起来的。
热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。这一结论称做“热力学第零定律”。
热力学第一定律:热力学的基本定律之一。是能的转化与守恒定律在热力学中的表现。它指出热是物质运动的一种形式,并表明,一个体系内能增加的量值△E(=E末-E初)等于这一体系所吸收的热量Q与外界对它所做的功之和,可表示为 △E=W+Q
热力学第一定律也可表述为:第一类永动机是不可能制造的。
热力学第二定律:它的表述有很多种,但实际上都是互相等效的。比较有代表性的有如下三种表述方式:
不可能使热量从低温物体传到高温物体而不引起其它变化(克劳修斯)。
不可能从单一热源吸取热量,使之完全变成有用功而不产生其它影响(开尔文)。
不可能制造第二类永动机(普朗克)。
以上三种说法(也包括其它表述法)所描述的一个事实是:一切与热现象有关的实际宏观过程都是不可逆的。
热力学第三定律:“不可能使一个物体冷却到绝对温度的零度。”这就是热力学第三定律。
根据热力学第三定律,在绝对零度下一切物质都停止运动。
绝对零度虽然不能达到,但可以无限趋近。