万有引力的公式是什么?
万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:
ω=2π/T(周期)
如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小为
mrω^2=mr(4π^2)/T^2
另外,由开普勒第三定律可得
r^3/T^2=常数k'
那么沿太阳方向的力为
mr(4π^2)/T^2=mk'(4π^2)/r^2
由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。从太阳的角度看,
(太阳的质量M)(k'')(4π^2)/r^2
是太阳受到沿行星方向的力。因为是相同大小的力,由这两个式子比较可知,k'包含了太阳的质量M,k''包含了行星的质量m。由此可知,这两个力与两个天体质量的乘积成正比,它称为万有引力。
如果引入一个新的常数(称万有引力常数),再考虑太阳和行星的质量,以及先前得出的4·π2,那么可以表示为
万有引力=GmM/r^2
万有引力的推导公式和过程
万有引力定律是牛顿在借用开普勒第三行星运动定律和自己的分析思考下得出的。开普勒第三行星运动定律:所有行星运动轨迹的半长轴的三次方与其运动周期的平方的比值为定值。为简化推导,设行星运动轨迹为圆,其轨道半径为r,周期为T。相应的有:r^3/T^2=K(定值)。设太阳质量为M,行星的质量为m,行星的加速度为a。则由“牛二”定律,行星作匀速圆周运动所受到的向心力F=ma=m(w^2)r=m[(4π^2)/T^2]r=(4π^2)K×(m/r^2).可见F正比于m,于是牛顿想到既然力的作用是相互的,就应该有F也正比于M。由此F=(4π^2)K×(m/r^2)=GM×(m/r^2),比例系数G即为我们所熟知的万有引力常量。而K的大小与中心天体的质量有关。
希望能对你有所帮助
万有引力系列公式
GMm/R^2=mv^2/R=mw^2R.
[解题过程]
万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径
万有引力定律是解释物体之间的相互作用的引力的定律。
万有引力定律是牛顿在1687年于《数学原理》上发表的。定律指出:
两物体间引力的大小与两物体的质量的乘积成正比,与两物体间距离的平方成反比,而与两物体的化学本质或物理状态以及中介物质无关。
用公式表示为:F=G*M1M2/(R*R) (G=6.67×10^-11N•m^2/kg^2) 可以读成F等于G乘以M1M2除以R的平方商
更加严谨的表示是如下的矢量形式:
其中:
F: 两个物体之间的引力
G: 万有引力常数
m1: 物体1的质量
m2: 物体2的质量
r: 两个物体之间的距离