求库仑定律公式及证明
库仑定律应该是两个点电荷之间作用力的公式
假设有一个q点电荷,离它r距离的地方有一个Q点电荷.为了算出q对Q的作用力,先算出距离r处的电场强度E大小.对于一个以q为圆心,半径为r球面,用高斯定理:E·4πr²=q/ε[0](电场大小应该都一样,是E,因为点电荷各个方向对称,通量就成了E乘以面积4πr²;右边就是包围的电荷q除以介电常数ε[0])
这样E=q/4πr²ε[0]=kq/r²(k=1/4πε[0]就是库伦定律里面的比例系数)
电场力大小F=EQ=kqQ/r²就是库仑定律公式.就证明了,但注意出发点是高斯定理.
验证方法
库伦扭秤扭转的扭转角度为X,那么可以得出由于斥力而产生的力矩为MX(M为扭转系数,为可测定值).
斥力的力矩还可用FL(F为斥力大小,L为连接在扭秤上的两个球之间的距离,F与L垂直)表示.
这样,就可以推出F与X的关系,继而推出库仑定律