万有引力公式
第一条 :1.万有引力公式一般适用于质点 注意“一般”这个字,在计算地月系统是优势是要考虑地月的半径的
第二条 :2.质点间的距离是可以无限接近甚至于零的 片面的,“可以无限接近甚至于零的,也可以是无限远离的。只是这样以来引力很小
第三条 :3.两个质点之间距离为零时,万有引力为无穷大。两个质点之间距离为零时就不能看作质点,要用微积分的方法了
高等数学定积分求引力问题
解:因为两个细杆都是有长度的,因此,这个题应该先求长为L,质量为M的细杆对同一直线上质量为m的一个点的引力是多少:可先设,杆的右端点到点的距离为 n
以杆的右端点为原点,向右为y轴的正向建立坐标系(选长度y,变化为dy)y的取值-L~0
df=[GM/Ldym]/(n-y)^2
f=GMm/[n(n+L)]
现在,右边的点变成了杆,以左杆的右端点为原点,向右为x轴的正向建立坐标系
(上式中的n就是下面的x,m=M/Ldx)
在右杆上任取dx
则此时的dF=GM*(M/Ldx)/[x(x+L)] x的取值为a~a+L
F=GM^2/L^2*ln[(a+L)^2/(a^2+2aL)]