人工神经网络的主要用途?

bdqnwqk8个月前百科12

医学领域通过建立使检测仪器自动判断肿瘤为良性还是恶性机械领域自动化(这个很多,大多都是试验应用,控制自我学习),通过安装摄像头,让计算机学习人类在各种路段(转弯,堵车,下坡,上坡)的驾驶动作(转向,刹车,减速,加速),从而达到自动驾驶。

机器人学习是人工神经网络的应用吗

机器人学习是人工神经网络的应用的。

人工神经网络的应用在语音识别、计算机视觉、机器人学习、语言翻译等领域,均战胜传统的机器学习方法,甚至在人脸验证、图像分类上还超过人类的识别能力。

人工神经网络的前景:

神经网络的前景,神经网络基础结构简单,理论上可以拟合各种数据状况,缺点也是因为结构简单,需要大规模的神经网络组合工作,而对这种复杂的网络目前的工具不足以驾驭。导致其演进缓慢。这是其本身自有的优缺点。如果一直没有克服,那就会有新的技术去替代这种结构。

机器学习之人工神经网络算法

机器学习中有一个重要的算法,那就是人工神经网络算法,听到这个名称相信大家能够想到人体中的神经。其实这种算法和人工神经有一点点相似。当然,这种算法能够解决很多的问题,因此在机器学习中有着很高的地位。下面我们就给大家介绍一下关于人工神经网络算法的知识。1.神经网络的来源我们听到神经网络的时候也时候近一段时间,其实神经网络出现有了一段时间了。神经网络的诞生起源于对大脑工作机理的研究。早期生物界学者们使用神经网络来模拟大脑。机器学习的学者们使用神经网络进行机器学习的实验,发现在视觉与语音的识别上效果都相当好。在BP算法诞生以后,神经网络的发展进入了一个热潮。2.神经网络的原理那么神经网络的学习机理是什么?简单来说,就是分解与整合。一个复杂的图像变成了大量的细节进入神经元,神经元处理以后再进行整合,最后得出了看到的是正确的结论。这就是大脑视觉识别的机理,也是神经网络工作的机理。所以可以看出神经网络有很明显的优点。3.神经网络的逻辑架构让我们看一个简单的神经网络的逻辑架构。在这个网络中,分成输入层,隐藏层,和输出层。输入层负责接收信号,隐藏层负责对数据的分解与处理,最后的结果被整合到输出层。每层中的一个圆代表一个处理单元,可以认为是模拟了一个神经元,若干个处理单元组成了一个层,若干个层再组成了一个网络,也就是”神经网络”。在神经网络中,每个处理单元事实上就是一个逻辑回归模型,逻辑回归模型接收上层的输入,把模型的预测结果作为输出传输到下一个层次。通过这样的过程,神经网络可以完成非常复杂的非线性分类。4.神经网络的应用。图像识别领域是神经网络中的一个著名应用,这个程序是一个基于多个隐层构建的神经网络。通过这个程序可以识别多种手写数字,并且达到很高的识别精度与拥有较好的鲁棒性。可以看出,随着层次的不断深入,越深的层次处理的细节越低。但是进入90年代,神经网络的发展进入了一个瓶颈期。其主要原因是尽管有BP算法的加速,神经网络的训练过程仍然很困难。因此90年代后期支持向量机算法取代了神经网络的地位。在这篇文章中我们大家介绍了关于神经网络的相关知识,具体的内容就是神经网络的起源、神经网络的原理、神经网络的逻辑架构和神经网络的应用,相信大家看到这里对神经网络知识有了一定的了解,希望这篇文章能够帮助到大家。