大学微积分知识点

bdqnwqk1年前百科13

1.微积分知识(具体内容)

微积分是研究函数的微分、积分以及有关概念和应用的数学分支。

微积分是建立在实数、函数和极限的基础上的。 极限和微积分的概念可以追溯到古代。

到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的。

直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。 微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用。

特别是计算机的发明更有助于这些应用的不断发展。 微积分学是微分学和积分学的总称。

客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。

由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。

微积分学的建立 从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。 公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。

作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。

三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。

到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。

第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。

第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。

为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。

他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。 牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。

牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。 牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。

他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。

德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。

他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。

他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。 前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。

微积分也是这样。 不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。

英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。 其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。

比。

2.微积分常用公式有哪些

(1)微积分的基本公式共有四大公式:1.牛顿-莱布尼茨公式,又称为微积分基本公式2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分4.斯托克斯公式,与旋度有关(2)微积分常用公式:Dx sin x=cos xcos x = -sin xtan x = sec2 xcot x = -csc2 xsec x = sec x tan xcsc x = -csc x cot xsin x dx = -cos x + Ccos x dx = sin x + Ctan x dx = ln |sec x | + Ccot x dx = ln |sin x | + Csec x dx = ln |sec x + tan x | + Ccsc x dx = ln |csc x - cot x | + Csin-1(-x) = -sin-1 xcos-1(-x) = - cos-1 xtan-1(-x) = -tan-1 xcot-1(-x) = - cot-1 xsec-1(-x) = - sec-1 xcsc-1(-x) = - csc-1 xDx sin-1 ()= cos-1 ()=tan-1 ()=cot-1 ()=sec-1 ()=csc-1 (x/a)=sin-1 x dx = x sin-1 x++Ccos-1 x dx = x cos-1 x-+Ctan-1 x dx = x tan-1 x- ln (1+x2)+Ccot-1 x dx = x cot-1 x+ ln (1+x2)+Csec-1 x dx = x sec-1 x- ln |x+|+Ccsc-1 x dx = x csc-1 x+ ln |x+|+Csinh-1 ()= ln (x+) xRcosh-1 ()=ln (x+) x≥1tanh-1 ()=ln () |x| 1sech-1()=ln(+)0≤x≤1csch-1 ()=ln(+) |x| >0Dx sinh x = cosh xcosh x = sinh xtanh x = sech2 xcoth x = -csch2 xsech x = -sech x tanh xcsch x = -csch x coth xsinh x dx = cosh x + Ccosh x dx = sinh x + Ctanh x dx = ln | cosh x |+ Ccoth x dx = ln | sinh x | + Csech x dx = -2tan-1 (e-x) + Ccsch x dx = 2 ln || + Cduv = udv + vduduv = uv = udv + vdu→ udv = uv - vducos2θ-sin2θ=cos2θcos2θ+ sin2θ=1cosh2θ-sinh2θ=1cosh2θ+sinh2θ=cosh2θDx sinh-1()= cosh-1()= tanh-1()= coth-1()=sech-1()= csch-1(x/a)=sinh-1 x dx = x sinh-1 x-+ Ccosh-1 x dx = x cosh-1 x-+ Ctanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ Ccoth-1 x dx = x coth-1 x- ln | 1-x2|+ Csech-1 x dx = x sech-1 x- sin-1 x + Ccsch-1 x dx = x csch-1 x+ sinh-1 x + Csin 3θ=3sinθ-4sin3θcos3θ=4cos3θ-3cosθ→sin3θ= (3sinθ-sin3θ)→cos3θ= (3cosθ+cos3θ)sin x = cos x = sinh x = cosh x = 正弦定理:= ==2R余弦定理:a2=b2+c2-2bc cosαb2=a2+c2-2ac cosβc2=a2+b2-2ab cosγsin (α±β)=sin α cos β ± cos α sin βcos (α±β)=cos α cos β sin α sin β2 sin α cos β = sin (α+β) + sin (α-β)2 cos α sin β = sin (α+β) - sin (α-β)2 cos α cos β = cos (α-β) + cos (α+β)2 sin α sin β = cos (α-β) - cos (α+β)sin α + sin β = 2 sin (α+β) cos (α-β)sin α - sin β = 2 cos (α+β) sin (α-β)cos α + cos β = 2 cos (α+β) cos (α-β)cos α - cos β = -2 sin (α+β) sin (α-β)tan (α±β)=,cot (α±β)=ex=1+x+++…++ …sin x = x-+-+…++ …cos x = 1-+-+++ ln (1+x) = x-+-+++ tan-1 x = x-+-+++ (1+x)r =1+rx+x2+x3+ -1= n= n (n+1)= n (n+1)(2n+1)= [ n (n+1)]2Γ(x) = x-1e-t dt = 22x-1dt = x-1 dtβ(m,n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx。

3.高教版大学微积分重点

我不知道你们学了哪些以及老师的出题风格和难度什么的,当做是经管类一般的微积分吧。

个人觉得的重点:基本初等函数和图像,求极限(这就包含不少内容,比如洛必达法则,一些重要极限,夹逼定理等等),函数的连续和间断,泰勒公式,等价无穷小,有界闭区间上连续函数的基本性质,导数和微分的概念以及计算,微分中值定理,积分的基本方法(换元积分法与分步积分法),微积分基本定理,多元函数偏导的存在、连续、可微之间的关系,多元函数的求导(复合函数求导和隐函数求导之类的),多元函数的极值问题,二重积分的应用,常数项级数和幂级数,级数的敛散性判断(包括正项级数、交错级数和任意项级数,还有绝对收敛和条件收敛的问题),微分方程的求解(变量可分离的微分方程、齐次微分方程、一阶线性微分方程、二阶常系数线性微分方程)。不知有没有过你考试时间,希望能帮到你。

4.高教版大学微积分重点

我不知道你们学了哪些以及老师的出题风格和难度什么的,当做是经管类一般的微积分吧。个人觉得的重点:基本初等函数和图像,求极限(这就包含不少内容,比如洛必达法则,一些重要极限,夹逼定理等等),函数的连续和间断,泰勒公式,等价无穷小,有界闭区间上连续函数的基本性质,导数和微分的概念以及计算,微分中值定理,积分的基本方法(换元积分法与分步积分法),微积分基本定理,多元函数偏导的存在、连续、可微之间的关系,多元函数的求导(复合函数求导和隐函数求导之类的),多元函数的极值问题,二重积分的应用,常数项级数和幂级数,级数的敛散性判断(包括正项级数、交错级数和任意项级数,还有绝对收敛和条件收敛的问题),微分方程的求解(变量可分离的微分方程、齐次微分方程、一阶线性微分方程、二阶常系数线性微分方程)。

不知有没有过你考试时间,希望能帮到你。

5.微积分知识(具体内容)

微积分是研究函数的微分、积分以及有关概念和应用的数学分支。

微积分是建立在实数、函数和极限的基础上的。 极限和微积分的概念可以追溯到古代。

到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的。

直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。 微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用。

特别是计算机的发明更有助于这些应用的不断发展。 微积分学是微分学和积分学的总称。

客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。

由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。

微积分学的建立 从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。 公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。

作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。

三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。

到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。

第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。

第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。

为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。

他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。 牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。

牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。 牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。

他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。

德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。

他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。

他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。 前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。

微积分也是这样。 不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。

英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。 其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。

比。

6.大学微积分的内容有哪些

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

【微积分书籍的目录】

第一章 函数、极限与连续

引言

第一节 函数

第二节 极限的概念

第三节

极限的运算法则和性质

第四节 极限存在准则与两个重要极限

第五节 无穷小与无穷大

第六节

连续函数的概念和性质

第七节 数学建模简介

第八节

极限定义的精确表述

阅读材料MATLAB环境下对函数与极限的讨论

第二章

导数与微分

引言

第一节 导数概念

第二节 函数的求导法则

第三节

高阶导数

第四节 隐函数的导数

第五节

函数的微分

阅读材料运用MATLAB求导

第三章

中值定理与导数的应用

引言

第一节 中值定理

第二节 洛必达法则

第三节

函数的单调性与曲线的凹凸性

第四节 函数的极值与最大值、最小值

第五节

函数图形的描绘

第六节 导数在经济中的应用

第四章 不定积分

引言

第一节

不定积分的概念与性质

第二节 换元积分法

第三节

分部积分法

阅读材料运用MAnAB求不定积分

第五章 定积分

引言

第一节

定积分的概念与性质

第二节 微积分基本公式

第三节 定积分的换元法和分部积分法

第四节

反常积分

第五节 定积分在几何学上的应用

第六节

定积分在经济分析中的应用

阅读材料运用MATLAB求定积分

第六章

多元函数微积分

引言

第一节 空间解析几何简介

第二节 多元函数的基本概念

第三节

偏导数

第四节 全微分

第五节 复合函数微分法与隐函数微分法

第六节

多元函数的极值及其求法

第七节 最小二乘法

第八节 二重积分的概念与性质

第九节

二重积分的计算

阅读材料MAnAB环境下的多元函数

第七章 无穷级数

引言

第一节

无穷级数收敛与发散的概念

第二节 收敛级数的基本性质

第三节 正项级数及其判别法

第四节

任意项级数的绝对收敛与条件收敛

第五节 幂级数

第六节 泰勒公式

第七节

函数的幂级数展开式

第八节

幂级数在近似计算中的应用

阅读材料MATLAB环境下函数的泰勒展开式

第八章

微分方程与差分方程简介

引言

第一节 微分方程的基本概念

第二节 可分离变量的微分方程

第三节

齐次方程

第四节 一阶线性微分方程

第五节 可降阶的二阶微分方程

第六节

二阶常系数线性微分方程

第七节 常微分方程在数学建模中的应用

第八节

差分方程简介

阅读材料运用MATLAB解微分方程

附录1预备知识

一、常用初等代数公式

二、常用基本三角公式

三、常用求面积和体积的公式

附录2几种常用的曲线

7.大学微积分考试大纲

《微积分》考试大纲第一章:函数与Mathematica入门1.1 集合 掌握集合运算,理解邻域的概念。

1.2 函数 理解函数的概念,掌握函数的奇偶性、单调性、周期性、有界性。理解复合函数和反函数的概念。

熟悉基本初等函数的性质及其图形。1.3 经济学中常用的函数 掌握常用的经济函数,会建立简单的经济问题的函数关系式。

第二章:极限与连续2.1 极限 了解数列极限及函数极限的概念和性质,掌握极限的四则运算法则,会用变量代换求简单复合函数的极限,了解极限存在的两个准则(夹逼准则和单调有界准则),连续性掌握两个重要极限,并会用它们求相关的极限。2.2 函数的连续性 理解函数的连续性的概念,了解函数间断点的概念,会判断函数的连续性及间断点的类型。

了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理和有界性理、零点定理和介值定理)。2.3 无穷小的比较 了解无穷大量和无穷小量的有关概念及性质,了解无穷小量的比较方法,会用等价无穷小求极限。

第三章:导数与微分3.1 导数的概念 理解导数的概念及其几何意义,了解函数的可导性与连续性之间的关系。3.2 求导法则和基本初等函数导数公式 掌握基本初等函数的求导公式,掌握导数的四则运算法则和复合函数求导法则,了解反函数的求导法则,会求隐函数的导数。

了解高阶导数的概念,掌握初等函数的一阶,二阶导数的求法,了解几个常见的函数( )的n阶导数的一般表达式。3.3 微分的概念 理解微分的概念,理解函数的可微性,可导性及连续性的关系,了解微分四则运算法和一阶微分的形式不变性。

第四章:中值定理及导数应用4.1 中值定理 了解罗尔(Rolle)中值定理,拉格朗日(Lagrange) 中值定理及柯西(Cauchy)中值定理。4.2 导数的应用 会用洛必达(L'Hospital)法则求不定式的极限,理解函数的极值的概念,掌握利用导数判断函数的单调性和求极值的方法。

4.3 泰勒公式 了解泰勒(Taylor)定理及用多项式逼近函数的思想。4.4 函数的最大值和最小值 会求解较简单的最大值和最小值的应用问题。

4.5 函数的凹凸性与拐点 会用导数判断函数图形的凹凸性,会求拐点。 4.6 函数图形的描绘 会描绘一些简单函数的图象(包括水平和铅直渐近线)。

4.7 曲率 知道弧微分及曲率的概念,能利用公式进行简单计算。第五章:导数在经济问题中的应用5.1 导数在经济分析中的应用 理解边际函数与弹性函数的概念,会求常用经济函数的边际函数(如边际成本,边际收益.边际利润)或弹性函数(如需求价格弹性等)。

5.2 函数极值在经济管理中的应用举例 会在经济管理问题中进行边际分析,弹性分析,会求解经济管理问题中的最大值与最 小值的应用问题 (如求最大利润或最小成本),了解库存管理问题及复利问题,会求解简单的应用问题(如最优订购批量.最优订购次数,最优进货周期,连续复利等)。第六章:不定积分6.1 不定积分的概念 理解原函数与不定积分的概念,掌握不定积分的性质,了解原函数存在定理,掌握不定积分的基本积分公式。

6.2 换元积分法 掌握不定积分的第一、第二换元积分法。 6.3 分部积分法 掌握不定积分的分部积分法。

第七章:定积分7.1 定积分的概念 理解定积分的概念及几何意义。7.2 定积分的性质 了解定积分的基本性质和积分中值定理。

7.3 微积分基本公式 理解上限变量函数及其求导定理,掌握牛顿-莱布尼兹(Newton-Leibniz)公式。7.4 定积分的换元法 掌握定积分的换元积分法。

7.5 定积分的分部积分法 掌握定积分的分部积分法。7.7 广义积分 了解两类反常积分及其收敛性的概念和计算。

第八章:定积分的应用8.1 平面图形的面积 理解并掌握实际问题中建立定积分表达式的元素法(微元法),会建立简单的平面图形的面积的定积分表达式。8.2 体积 会建立简单的旋转体体积的定积分表达式。

8.3 平面曲线的弧长 知道平面曲线弧长的计算方法。8.4 定积分在经济问题中的应用举例 会用定积分求解经济应用问题(如:由边际函数求总量函数)。

第九章:微分方程9.1 微分方程基本概念 了解微分方程、解、阶、通解、初始条件和特解等概念。9.2 一阶微分方程 掌握可分离变量微分方程,齐次微分方程,一阶线性微分方程的求解方法。

9.3 可降阶的高阶微分方程 会用降阶法解下列三种类型高阶微分方程: , , 。9.4 二阶常系数线性微分方程 了解二阶线性微分方程解的结构,会求解二阶常系数齐次线性微分方程。

9.5 差分方程简介 了解差分方程的有关基本概念,会解一阶常系数齐次线性差分方程,会解简单的一阶常系数非齐次线性差分方程,会解二阶常系数差分方9.6 微分方程在经济分析中的应用举例 会建立微分方程、差分方程的模型,解决简单的经济应用问题。第十章:无穷级数10.1 常数项级数 理解无穷级数收敛、发散的概念以及收敛级数和的概念,了解无穷级数的基本性质和收敛的必要条件。

10.2 正项级数的敛散性判别法 了解正项级数的比较审敛法,掌握几何级数和P一级数的敛散性,掌握正项级数的比值审敛法和根值审敛法。了解交错级数的莱布尼兹定理,了解绝对收敛与条件收敛的概念及二者的关系。

10.3 幂级数 会求简单幂级。

8.大学数学微积分公式

(1) ∫x^αdx=x^(α+1)/(α+1)+C (α≠-1)(2) ∫1/x dx=ln|x|+C(3) ∫a^x dx=a^x/lna+C∫e^x dx=e^x+C(4) ∫cosx dx=sinx+C(5) ∫sinx dx=-cosx+C(6) ∫(secx)^2 dx=tanx+C(7) ∫(cscx)^2 dx=-cotx+C(8) ∫secxtanx dx=secx+C(9) ∫cscxcotx dx=-cscx+C(10) ∫1/(1-x^2)^0.5 dx=arcsinx+C(11) ∫1/(1+x^2)=arctanx+C(12) ∫1/(x^2±1)^0.5 dx=ln|x+(x^2±1)^0.5|+C(13) ∫tanx dx=-ln|cosx|+C(14) ∫cotx dx=ln|sinx|+C(15) ∫secx dx=ln|secx+tanx|+C(16) ∫cscx dx=ln|cscx-cotx|+C(17) ∫1/(x^2-a^2) dx=(1/2a)*ln|(x-a)/(x+a)|+C(18) ∫1/(x^2+a^2) dx=(1/a)*arctan(x/a)+C(19)∫1/(a^2-x^2)^0.5 dx=arcsin(x/a)+C(20)∫1/(x^2±a^2)^0.5 dx=ln|x+(x^2±a^2)^0.5|+C(21)∫(1-x^2)^0.5 dx=(x*(1-x^2)^0.5+arcsinx)/2+C。

9.微积分大学重点,公式

公式Dx sin x=cos xcos x = -sin xtan x = sec2 xcot x = -csc2 xsec x = sec x tan xcsc x = -csc x cot xsin x dx = -cos x + Ccos x dx = sin x + Ctan x dx = ln |sec x | + Ccot x dx = ln |sin x | + Csec x dx = ln |sec x + tan x | + Ccsc x dx = ln |csc x - cot x | + Csin-1(-x) = -sin-1 xcos-1(-x) = - cos-1 xtan-1(-x) = -tan-1 xcot-1(-x) = - cot-1 xsec-1(-x) = - sec-1 xcsc-1(-x) = - csc-1 xDx sin-1 ()= cos-1 ()=tan-1 ()=cot-1 ()=sec-1 ()=csc-1 (x/a)=sin-1 x dx = x sin-1 x++Ccos-1 x dx = x cos-1 x-+Ctan-1 x dx = x tan-1 x- ln (1+x2)+Ccot-1 x dx = x cot-1 x+ ln (1+x2)+Csec-1 x dx = x sec-1 x- ln |x+|+Ccsc-1 x dx = x csc-1 x+ ln |x+|+Csinh-1 ()= ln (x+) xRcosh-1 ()=ln (x+) x≥1tanh-1 ()=ln () |x| 1sech-1()=ln(+)0≤x≤1csch-1 ()=ln(+) |x| >0Dx sinh x = cosh xcosh x = sinh xtanh x = sech2 xcoth x = -csch2 xsech x = -sech x tanh xcsch x = -csch x coth xsinh x dx = cosh x + Ccosh x dx = sinh x + Ctanh x dx = ln | cosh x |+ Ccoth x dx = ln | sinh x | + Csech x dx = -2tan-1 (e-x) + Ccsch x dx = 2 ln || + Cduv = udv + vduduv = uv = udv + vdu→ udv = uv - vducos2θ-sin2θ=cos2θcos2θ+ sin2θ=1cosh2θ-sinh2θ=1cosh2θ+sinh2θ=cosh2θDx sinh-1()= cosh-1()= tanh-1()= coth-1()=sech-1()= csch-1(x/a)=sinh-1 x dx = x sinh-1 x-+ Ccosh-1 x dx = x cosh-1 x-+ Ctanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ Ccoth-1 x dx = x coth-1 x- ln | 1-x2|+ Csech-1 x dx = x sech-1 x- sin-1 x + Ccsch-1 x dx = x csch-1 x+ sinh-1 x + Csin 3θ=3sinθ-4sin3θcos3θ=4cos3θ-3cosθ→sin3θ= (3sinθ-sin3θ)→cos3θ= (3cosθ+cos3θ)sin x = cos x = sinh x = cosh x = := ==2R: a2=b2+c2-2bc cosαb2=a2+c2-2ac cosβc2=a2+b2-2ab cosγsin (α±β)=sin α cos β ± cos α sin βcos (α±β)=cos α cos β sin α sin β2 sin α cos β = sin (α+β) + sin (α-β)2 cos α sin β = sin (α+β) - sin (α-β)2 cos α cos β = cos (α-β) + cos (α+β)2 sin α sin β = cos (α-β) - cos (α+β)sin α + sin β = 2 sin (α+β) cos (α-β)sin α - sin β = 2 cos (α+β) sin (α-β)cos α + cos β = 2 cos (α+β) cos (α-β)cos α - cos β = -2 sin (α+β) sin (α-β)tan (α±β)=, cot (α±β)=ex=1+x+++…++ …sin x = x-+-+…++ …cos x = 1-+-+++ ln (1+x) = x-+-+++ tan-1 x = x-+-+++ (1+x)r =1+rx+x2+x3+ -1= n= n (n+1)= n (n+1)(2n+1)= [ n (n+1)]2Γ(x) = x-1e-t dt = 22x-1dt = x-1 dtβ(m, n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx希望喜欢,给个好评哦哦,嘻嘻。

大学微积分知识点