人工智能的基础知识
1.研究人工智能的知识需要哪些基础知识
人工智能是一个包含很多学科的交叉学科,你需要了解计算机的知识、信息论、控制论、图论、心理学、生物学、热力学,你要有一定的哲学基础,有科学方法论作保障。
这些学科的每一门都是博大精深的,但同时很多事物都是相通的,你学了很多知识有了一定的基础的时候再看相关知识就会触类旁通,很容易。在这中间关键是要有自己的思考,不能人云亦云,毕竟人工智能是一个正在发展并具有无穷挑战和乐趣的学科,如果你对人工智能感兴趣,那欢迎到百度的人工智能吧做客,那里有对人工智能丰富而深刻的讨论。
2.学习人工智能要准备哪些基础知识
需要必备的知识有: 1、线性代数:如何将研究对象形式化? 2、概率论:如何描述统计规律? 3、数理统计:如何以小见大? 4、最优化理论: 如何找到最优解? 5、信息论:如何定量度量不确定性? 6、形式逻辑:如何实现抽象推理? 7、线性代数:如何将研究对象形式化?人工智能简介: 1、人工智能(Artificial Intelligence),英文缩写为AI。
2、它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能涉及的学科: 哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,社会结构学与科学发展观。
3.人工智能如何入门
人工智能入门需要掌握这些知识:1.基础数学知识:线性代数、概率论、统计学、图论2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库3.编程语言基础:C/C++、Python、Java4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容。
5.工具基础知识:opencv、matlab、caffe等要进入人工智能行业,首先要有一定的数学功底,因为人工智能不同于app开发,网页开发、游戏开发等传统的互联网职位,先看看51cto学院人工智能的课程,会有不少帮助。人工智能是从数学中的“逼近理论”逐步演化而来的,当今人工智能所使用的方法,最开始的时候大部分是数学家为了逼近某些比较难表示的非线性函数而使用的。
后来随着计算机性能的提高,计算机工作者,统计学家,开始尝试用这套“逼近理论”解决一些分类问题。逐步发展成为现在的人工智能局面。
现在属于人工智能行业发展初期,各种可用的api函数都比较少,所以自己编写算法是必须要会的。
4.自学人工智能需要学那些专业知识
需要数学基础:
高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识。线性代数将研究对象形式化,概率论描述统计规律。
需要算法的积累:
人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:
比如C语言,MATLAB之类。毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
5.【名词解释——人工智能】
人工智能(Artificial Intelligence) ,英文缩写为AI.它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学. 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等. 同名的还有美国科幻电影《人工智能》等. 人工智能, 英文单词 artilect ,来源于 雨果·德·加里斯 的著作 . “人工智能”一词最初是在1956 年Dartmouth学会上提出的.从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展.人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学.人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作.但不同的时代、不同的人对这种“复杂工作”的理解是不同的.例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发具有人工智能的机器人展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展.它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标.目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学技术的发展史联系在一起的.除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科.人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面.实际应用 机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,博弈,自动程序设计,还有航天应用等. 学科范畴 人工智能是一门边沿学科,属于自然科学和社会科学的交叉. 涉及学科 哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学, 研究范畴 自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法 人类思维方式 应用领域 智能控制,专家系统,机器人学,语言和图像理解,遗传编程 机器人工厂 安全问题 目前人工智能还在研究中,但有学者认为让计算机拥有智商是很危险的,它可能会反抗人类.这种隐患也在多部电影中发生过. 定义 人工智能的定义可以分为两部分,即“人工”和“智能”.“人工”比较好理解,争议性也不大.有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等.但总的来说,“人工系统”就是通常意义下的人工系统. 关于什么是“智能”,就问题多多了.这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题.人唯一了解的智能是人本身的智能,这是普遍认同的观点.但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了.因此人工智能的研究往往涉及对人的智能本身的研究.其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题. 人工智能目前在计算机领域内,得到了愈加广泛的重视.并在机器人,经济政治决策,控制系统,仿真系统中得到应用. 著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学.”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作.”这些说法反映了人工智能学科的基本思想和基本内容.即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术. 人工智能(Artificial Intelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能).也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一.这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统. 人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理。
6.学习人工智能怎么入门
想要学习人工智应该怎么入门:业余爱好的话,最好把算法与数据结构学好,这是基础,最好有良好的编程水平,多思考什么才是智能这个问题,对实际的一些问题或者经典的问题提出自己的解法,然后去实现,逐渐地就会找到自己对人工智能的理解。
一、有关人工智能的介绍:人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”,也可能超过人的智能。
二、研究价值:例如繁重的科学和工程计算本来是要人脑来承担的,如今计算机不但能完成这种计算,而且能够比人脑做得更快、更准确,因此当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”,可见复杂工作的定义是随着时代的发展和技术的进步而变化的,人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,另一方面又转向更有意义、更加困难的目标。
通常,“机器学习”的数学基础是“统计学”、“信息论”和“控制论”。还包括其他非数学学科。
这类“机器学习”对“经验”的依赖性很强。计算机需要不断从解决一类问题的经验中获取知识,学习策略,在遇到类似的问题时,运用经验知识解决问题并积累新的经验,就像普通人一样。
我们可以将这样的学习方式称之为“连续型学习”。但人类除了会从经验中学习之外,还会创造,即“跳跃型学习”。
这在某些情形下被称为“灵感”或“顿悟”。一直以来,计算机最难学会的就是“顿悟”。
或者再严格一些来说,计算机在学习和“实践”方面难以学会“不依赖于量变的质变”,很难从一种“质”直接到另一种“质”,或者从一个“概念”直接到另一个“概念”。正因为如此,这里的“实践”并非同人类一样的实践。
人类的实践过程同时包括经验和创造。这是智能化研究者梦寐以求的东西。
7.人工智能如何入门
人工智能入门需要掌握这些知识:
1.基础数学知识:线性代数、概率论、统计学、图论
2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库
3.编程语言基础:C/C++、Python、Java
4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容。
5.工具基础知识:opencv、matlab、caffe等
要进入人工智能行业,首先要有一定的数学功底,因为人工智能不同于app开发,网页开发、游戏开发等传统的互联网职位,先看看51cto学院人工智能的课程,会有不少帮助。人工智能是从数学中的“逼近理论”逐步演化而来的,当今人工智能所使用的方法,最开始的时候大部分是数学家为了逼近某些比较难表示的非线性函数而使用的。后来随着计算机性能的提高,计算机工作者,统计学家,开始尝试用这套“逼近理论”解决一些分类问题。逐步发展成为现在的人工智能局面。现在属于人工智能行业发展初期,各种可用的api函数都比较少,所以自己编写算法是必须要会的。
“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。