垂直知识点

bdqnwqk1年前学者7

1.初中数学重点

知识点1:因式分解知识点2:函数与直角坐标系1、一元二次方程2、二次函数3、反比例函数知识点3:图形全等、相似的灵活运用知识点4:分式、二次根式、不等式知识点5:数据的平均数中位数与众数(一般在填空或选择题中出现较多)知识点6:特殊三角函数值知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点一定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.10.经过圆心平分弦的直径垂直于弦。

知识点8:直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切.2.三角形的外接圆的圆心叫做三角形的外心.3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心.5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.知识点9:圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交.4.两个圆内切时,这两个圆的公切线只有一条.5.相切两圆的连心线必过切点.ps:更多详细的资料可以再找我要。

2.大气的垂直分层(知识点整理)

地球大气按其基本特性可分为若干层,但按不同的特性有不同的分层方法。常见的分层方法有:①按热状态特征 ,可分为对流层、平流层 、中间层 、热层和 外层(又称外逸层或逃逸层)。接近地面、对流运动最显著的大气区域为对流层,对流层上界称对流层顶,在赤道地区高度约17~18千米,在极地约8千米;从对流层顶 至约50千米的大气层称平流层,平流层内大气多作水平运动,对流十分微弱,臭氧层即位于这一区域内;中间层又称中层,是从平流层顶至约80千米的大气区域;热层是中间层顶至300~500千米的大气层;热层顶以上的大气层称外层大气。②按大气成分随高度分布特征,可分为均匀层和非均匀层。均匀层是指从地面到约80千米的大气层,因其大气各成分所占的体积百分比保持不变。均匀层的平均分子量为28.966克/摩尔,为一常数。非均匀层为80千米以上的大气区域,不同大气成分所占的体积百分比随高度而变,平均分子量不再是常数。③按大气的电离特征,可分为电离层和中性层。中性层又称非电离层 ,是指以中性成分为 主的大气层。电离层又可分为D 层、E层和F层。

参考资料:baidu

3.与垂直有关的知识中,有哪些重要结论

一、集合与简易逻辑: 一、理解集合中的有关概念 (1)集合中元素的特征: 确定性 , 互异性 , 无序性 . (2)集合与元素的关系用符号=表示. (3)常用数集的符号表示:自然数集 ;正整数集 ;整数集 ;有理数集 、实数集 . (4)集合的表示法: 列举法 , 描述法 , 韦恩图 . (5)空集是指不含任何元素的集合. 空集是任何集合的子集,是任何非空集合的真子集. 二、函数 一、映射与函数: (1)映射的概念: (2)一一映射:(3)函数的概念: 二、函数的三要素:相同函数的判断方法:①对应法则 ;②定义域 (两点必须同时具备) (1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法: (2)函数定义域的求法: ①含参问题的定义域要分类讨论; ②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定. (3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式; ②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域. ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域. 三、函数的性质: 函数的单调性、奇偶性、周期性 单调性:定义:注意定义是相对与某个具体的区间而言. 判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法. 应用:比较大小,证明不等式,解不等式. 奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系.f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数. 判别方法:定义法, 图像法 ,复合函数法 应用:把函数值进行转化求解. 周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期. 其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期. 应用:求函数值和某个区间上的函数解析式. 四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律. 常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考) 平移变换 y=f(x)→y=f(x+a),y=f(x)+b 注意:(ⅰ)有系数,要先提取系数.如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象. (ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义. 对称变换 y=f(x)→y=f(-x),关于y轴对称 y=f(x)→y=-f(x) ,关于x轴对称 y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称 y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称.(注意:它是一个偶函数) 伸缩变换:y=f(x)→y=f(ωx), y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换. 一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称; 五、反函数: (1)定义: (2)函数存在反函数的条件:(3)互为反函数的定义域与值域的关系:(4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域). (5)互为反函数的图象间的关系:(6)原函数与反函数具有相同的单调性; (7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数. 七、常用的初等函数: (1)一元一次函数:(2)一元二次函数: 一般式两点式顶点式二次函数求最值问题:首先要采用配方法,化为一般式, 有三个类型题型: (1)顶点固定,区间也固定.如: (2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外. (3)顶点固定,区间变动,这时要讨论区间中的参数. 等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根 注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况. (3)反比例函数: (4)指数函数: 指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和01和00)是等比数列. 25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列. 四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等.关键是找数列的通项结构. 26、分组法求数列的和:如an=2n+3n 27、错位相减法求和:如an=(2n-1)2n 28、裂项法求和:如an=1/n(n+1) 29、倒序相加法求和: 30、求数列{an}的最大、最小项的方法: ① an+1-an=…… 如an= -2n2+29n-3 ② an=f(n) 研究函数f(n)的增减性 31、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求 (1)当 >0,d。

4.初中数学知识点总结

常见的初中数学公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对 的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理 1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平 分线 44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那 么交点在对称轴上 45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图 形关于这条直线对称 46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方, 即a^2+b^2=c^2 47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那 么这个三角形是直角三角形 48 定理 四边形的内角和等于360° 49 四边形的外角和等于360° 50 多边形内角和定理 n边形的内角的和等于(n-2)*180° 51 推论 任意多边的外角和等于360° 52 平行四边形性质定理 1 平行四边形的对角相等 53 平行四边形性质定理 2 平行四边形的对边相等 54 推论 夹在两条平行线间的平行线段相等 55 平行四边形性质定理 3 平行四边形的对角线互相平分 56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形 57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形 58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形 59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形 60 矩形性质定理 1 矩形的四个角都是直角 61 矩形性质定理 2 矩形的对角线相等 62 矩形判定定理 1 有三个角是直角的四边形是矩形 63 矩形判定定理 2 对角线相等的平行四边形是矩形 64 菱形性质定理 1 菱形的四条边都相等 65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66 菱形面积=对角线乘积的一半,即 S=(a*b)÷2 67 菱形判定定理 1 四边都相等的四边形是菱形 68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形 69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等 70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每 条对角线平分一组对角 71 定理 1 关于中心对称的两个图形是全等的 72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对 称中心平分 73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那 么这两个图形关于这一点对称 74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75 等腰梯形的两条对角线相等 76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77 对角线相等的梯形是等腰梯形 78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么 在其他直线上截得的线段也相等 79 推论 1 经过梯形一腰的中点与底平行。

5.初中数学知识有哪些

初中数学知识点总结

一、基本知识

一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

垂直知识点

标签: 知识点