数学中考知识点归纳

bdqnwqk1年前百科9

1.人教版初中数学知识点总结

1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数= 1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1、正方形:C周长 S面积 a边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2、正方体:V:体积 a:棱长 表面积=棱长*棱长*6 S表=a*a*6 体 积=棱长*棱长*棱长 V=a*a*a 3、长方形: C周长 S面积 a边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5、三角形 s面积 a底 h高 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6、平行四边62616964757a686964616fe58685e5aeb931333264636163形:s面积 a底 h高 面积=底*高 s=ah 7、梯形:s面积 a上底 b下底 h高 面积=(上底+下底)*高÷2 s=(a+b)*h÷2 8 圆形:S面 C周长 ∏ d=直径 r=半径 (1)周长=直径*∏=2*∏*半径 C=∏d=2∏r (2)面积=半径*半径*∏ 9、圆柱体:v体积 h:高 s:底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 10、圆锥体:v体积 h高 s底面积 r底面半径 体积=底面积*高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 植树问题 1、非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 2、封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比 折扣=实际售价÷原售价*100%(折扣 利息=本金*利率*时间 税后利息=本金*利率*时间*(1-20%) 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年 1年=12月 大月(31天)有: 1\3\5\7\8\10\12月 小月(30天)的有: 4\6\9\11月 平年 2月28天, 闰年 2月29天 平年全年365天, 闰年全年366天 1日=24小时 1小时=60分 1分=60秒 1小时=3600秒 小学数学几何形体周长 面积 体积计算公式 1、长方形的周长=(长+宽)*2 C=(a+b)*2 2、正方形的周长=边长*4 C=4a 3、长方形的面积=长*宽 S=ab 4、正方形的面积=边长*边长 S=a.a= a 5、三角形的面积=底*高÷2 S=ah÷2 6、平行四边形的面积=底*高 S=ah 7、梯形的面积=(上底+下底)*高÷2 S=(a+b)h÷2 8、直径=半径*2 d=2r 半径=直径÷2 r= d÷2 9、圆的周长=圆周率*直径=圆周率*半径*2 c=πd =2πr 10、圆的面积=圆周率*半径*半径 常见的初中数学公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最。

2.人教版初中数学的知识点梳理

初中数学知识点总结 一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。3、代数式代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。加减法:①同分母的分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一。

3.初中数学知识点总结

初三学习的知识是初中三年学习的汇总,为了方便大家更好地复习,数学好教师整理了初三数学关于圆的知识点,希望对大家的学习有所帮助。

1.不在同一直线上的三点确定一个圆。2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2 圆的两条平行弦所夹的弧相等3.圆是以圆心为对称中心的中心对称图形4.圆是定点的距离等于定长的点的集合5.圆的内部可以看作是圆心的距离小于半径的点的集合6.圆的外部可以看作是圆心的距离大于半径的点的集合7.同圆或等圆的半径相等8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角12.①直线L和⊙O相交 d②直线L和⊙O相切 d=r③直线L和⊙O相离 d>r13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线14.切线的性质定理 圆的切线垂直于经过切点的半径15.推论1 经过圆心且垂直于切线的直线必经过切点16.推论2 经过切点且垂直于切线的直线必经过圆心17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角18.圆的外切四边形的两组对边的和相等外角等于内对角19.如果两个圆相切,那么切点一定在连心线上20.①两圆外离 d>R+r ②两圆外切 d=R+r③.两圆相交 R-rr)④.两圆内切 d=R-r(R>r) ⑤两圆内含dr)21.定理相交两圆的连心线垂直平分两圆的公共弦22.定理 把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆24.正n边形的每个内角都等于(n-2)*180°/n25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长27.正三角形面积√3a/4 a表示边长28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k*(n-2)180°/n=360°化为(n-2)(k-2)=429.弧长计算公式:L=n兀R/18030.扇形面积公式:S扇形=n兀R^2/360=LR/231.内公切线长= d-(R-r) 外公切线长= d-(R+r)32.定理 一条弧所对的圆周角等于它所对的圆心角的一半33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r。

4.初中数学所有知识点

初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.②任何一个有理数都可以用数轴上的一个点来表示.③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等.④数轴上两个点表示的数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数.绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0.两个负数比较大小,绝对值大的反而小.有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加.②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.③一个数与0相加不变.减法:减去一个数,等于加上这个数的相反数.乘法:①两数相乘,同号得正,异号得负,绝对值相乘.②任何数与0相乘得0.③乘积为1的两个有理数互为倒数.除法:①除以一个数等于乘以一个数的倒数.②0不能作除数.乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数.混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的.2、实数 无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根.②如果一个数X的平方等于A,那么这个数X就叫做A的平方根.③一个正数有2个平方根/0的平方根为0/负数没有平方根.④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数.立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根.②正数的立方根是正数、0的立方根是0、负数的立方根是负数.③求一个数A的立方根的运算叫开立方,其中A叫做被开方数.实数:①实数分有理数和无理数.②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样.③每一个实数都可以在数轴上的一个点来表示.3、代数式代数式:单独一个数或者一个字母也是代数式.合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项.②把同类项合并成一项就叫做合并同类项.③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变.4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式.②一个单项式中,所有字母的指数和叫做这个单项式的次数.③一个多项式中,次数最高的项的次数叫做这个多项式的次数.整式运算:加减运算时,如果遇到括号先去括号,再合并同类项.幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一样.整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式.方法:提公因式法、运用公式法、分组分解法、十字相乘法.分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0.②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变.。

5.初中数学知识点总汇

初中数学知识点初中数学知识点集一、数与式(一)有理数1、有理数的分类2、数轴的定义与应用3、相反数4、倒数5、绝对值6、有理数的大小比较7、有理数的运算(二)实数8、实数的分类9、实数的运算10、科学记数法11、近似数与有效数字12、平方根与算术根和立方根13、非负数14、零指数次幂、负指数次幂(三)代数式15、代数式、代数式的值16、列代数式(四)整式17、整式的分类18、整式的加减、乘除的运算19、幂的有关运算性质20、乘法公式21、因式分解(五)分式22、分式的定义23、分式的基本性质24、分式的运算(六)二次根式25、二次根式的意义26、根式的基本性质27、根式的运算二、方程和不等式(一)一元一次方程28、方程、方程的解的有关定义29、一元一次的定义30、一元一次方程的解法31、列方程解应用题的一般步骤(二)二元一次方程32、二元一次方程的定义33、二元一次方程组的定义34、二元一次方程组的解法(代入法消元法、加减消元法)35、二元一次方程组的应用(三)一元二次方程36、一元二次方程的定义37、一元二次方程的解法(配方法、因式分解法、公式法、十字相乘法)38、一元二次方程根与系数的关系和根的判别式39、一元二次方程的应用(四)分式方程40、分式方程的定义41、分式方程的解法(转化为整式方程、检验)42、分式方程的增根的定义43、分式方程的应用(五)不等式和不等式组44、不等式(组)的有关定义45、不等式的基本性质46、一元一次不等式的解法47、一元一次不等式组的解法48、一元一次不等式(组)的应用三、函数(一)位置的确定与平面直角坐标系49、位置的确定50、坐标变换51、平面直角坐标系内点的特征52、平面直角坐标系内点坐标的符号与点的象限位置53、对称问题:P(x,y)→Q(x,- y)关于x轴对称 P(x,y)→Q(- x,y)关于y轴对称 P(x,y)→Q(- x,- y)关于原点对称54、变量、自变量、因变量、函数的定义55、函数自变量、因变量的取值范围(使式子有意义的条件、图象法)56、函数的图象:变量的变化趋势描述(二)一次函数与正比例函数57、一次函数的定义与正比例函数的定义58、一次函数的图象:直线,画法59、一次函数的性质(增减性)60、一次函数y=kx+b(k≠0)中k、b符号与图象位置61、待定系数法求一次函数的解析式(一设二列三解四回)62、一次函数的平移问题63、一次函数与一元一次方程、一元一次不等式、二元一次方程的关系(图象法)64、一次函数的实际应用65、一次函数的综合应用(1)一次函数与方程综合(2)一次函数与其它函数综合(3)一次函数与不等式的综合(4)一次函数与几何综合(三)反比例函数66、反比例函数的定义67、反比例函数解析式的确定68、反比例函数的图象:双曲线69、反比例函数的性质(增减性质)70、反比例函数的实际应用71、反比例函数的综合应用(四个方面、面积问题)(四)二次函数72、二次函数的定义73、二次函数的三种表达式(一般式、顶点式、交点式)74、二次函数解析式的确定(待定系数法)75、二次函数的图象:抛物线、画法(五点法)76、二次函数的性质(增减性的描述以对称轴为分界)77、二次函数y=ax2+bx+c(a≠0)中a、b、c、△与特殊式子的符号与图象位置关系78、求二次函数的顶点坐标、对称轴、最值79、二次函数的交点问题80、二次函数的对称问题81、二次函数的最值问题(实际应用)82、二次函数的平移问题83、二次函数的实际应用84、二次函数的综合应用(1)二次函数与方程综合(2)二次函数与其它函数综合(3)二次函数与不等式的综合(4)二次函数与几何综合1,过两点有且只有一条直线 2,两点之间线段最短 3,同角或等角的补角相等 4,同角或等角的余角相等 5,过一点有且只有一条直线和已知直线垂直 6,直线外一点与直线上各点连接的所有线段中,垂线段最短 7,经过直线外一点,有且只有一条直线与这条直线平行 8,如果两条直线都和第三条直线平行,这两条直线也互相平行 9,同位角相等,两直线平行 10,内错角相等,两直线平行 11,同旁内角互补 两直线行 12,两直线平行,同位角相等 13,两直线平行,内错角相等 14,两直线平行,同旁内角互补 15,三角形两边的和大于第三边 16,三角形两边的差小于第三边 17,三角形三个内角的和等180° 18,直角三角形的两个锐角互余 19,三角形的一个外角等于和它不相邻的两个内角的和 20,三角形的一个外角大于任何一个和它不相邻的内角 21,全等三角形的对应边,对应角相等 22,有两边和它们的夹角对应相等的两个三角形全等 (SAS)23 有两角和它们的夹边对应相等的两个三角形全等(ASA) 24,有两角和其中一角的对边对应相等的两个三角形全等(AAS) 25,有三边对应相等的两个三角形全等 (SSS)26,有斜边和一条直角边对应相等的两个直角三角形全等(HL) 27,在角的平分线上的点到这个角的两边的距离相等28,到一个角的两边的距离相同的点,在这个角的平分线上 29,角的平分线是到角的两边距离相等的所有点的集合 30,等腰三角形的性质定理 等腰三角形。

6.初中人教版数学总复习基础知识点汇总

初一数学全册复习提纲 第一章 有理数 1.1 正数与负数 在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。 1.2 有理数 正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。 通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。 在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0) 数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法 有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加。 2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。 3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。 1.4 有理数的乘除法 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。 乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。 mì 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。

在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。 负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何次幂都是0。 把一个大于10的数表示成a*10的n次方的形式,用的就是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。第二章 一元一次方程 2.1 从算式到方程 方程是含有未知数的等式。

方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。

等式的性质: 1.等式两边加(或减)同一个数(或式子),结果仍相等。 2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1) 把等式一边的某项变号后移到另一边,叫做移项。第三章 图形认识初步 3.1 多姿多彩的图形 几何体也简称体(solid)。

包围着体的是面(surface)。 3.2 直线、射线、线段 线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

连接两点间的线段的长度,叫做这两点的距离。 3.3 角的度量 1度=60分 1分=60秒 1周角=360度 1平角=180度 3.4 角的比较与运算 如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。 等角(同角)的补角相等。

等角(同角)的余角相等。第四章 数据的收集与整理 收集、整理、描述和分析数据是数据处理的基本过程。

第五章 相交线与平行线 5.1 相交线 对顶角(vertical angles)相等。 过一点有且只有一条直线与已知直线垂直(perpendicular)。

连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。 5.2 平行线 经过直线外一点,有且只有一条直线与这条直线平行(parallel)。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 直线平行的条件: 两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

两条直线被第三条直线所截,如果内错角相等,那么两直线平行。 两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

5.3 平行线的性质 两条平行线被第三条直线所截,同位角相等。 两条平行线被第三条直线所截,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。 判断一件事情的语句,叫做命题(proposition)。

第六章 平面直角坐标系 6.1 平面直角坐标系 含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。第七章 三角形 7.1 与三角形有关的线段 三角形(triangle)具有稳定性。

7.2 与三角形有关的角 三角形的内角和等于180度。 三角形的一个外角等于与它不相邻的两个内角的和。

三角形的一个外角大于与它不相邻的任何一个内角 7.3 多边形及其内角和 n边形内角和等于:(n-2)?180度 多边形(polygon)的外角和等于360度。第八章 二元一次方程组 8.1 二元一次方程组 方程中含有两个未知数(x和y),并且未。

7.初中数学知识归纳

晕,打了我10来个小时·~·#~!·谢谢大家给面子看啊~|原创|复习一、数与代数A:数与式:1:有理数有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。减法: 减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。2:实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数/0的立方根是0/负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。3:代数式代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。4:整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:AM。

AN=A(M+N) (AM)N=AMN (AB)N=AN。BN 除法一样。

A0=1,A-P=1/AP整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式方法:提公因式法/运用公式法/分组分解法/十字相乘法分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。加减法:①同分母的分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。B:方程与不等式1:方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个。

8.中考数学知识分类总结

一、单选。

1、倒数、绝对值。

2、科学计数法3、展开图、简单相似图形、方差4、概率、正多边形内角公式5、三角或圆的简单几何6、因式分解、二次函数方程7、方差、平均数、众数8、立体图形、实数范围、、、(历年中考不一)二、填空题。

9、二次根式之有意义的取值范围10、分解因式11、圆内弦、角、边12、几何中难题型三、解答题。13、三角函数等14、因式分解15、全等三角形或求值16、全等三角形或求值17、一元二次方程18、一次函数、反比例函数、图像的平移旋转及图形面积四、解答题。

19、梯形、三角形、多边形及三角函数20、圆内证切线,求度数和长。(主要靠圆的位置关系、三角函数、相似全等)21、根据图像和数据总结22、几何中的规律五、解答题。

23、抛物线和其他函数图像的交点求解析式、根据图像求取值范围。24、25、(偏难的几何和函数)主要:坐标、顶点公式、动点、坐标系的数量关系 【辅助线的做法】重要、图形中角于边的数量关系。

数学中考知识点归纳

标签: 知识点归纳