小学数学六年级知识点总结

bdqnwqk2年前百科12

1.六年级数学的知识点归纳有没有

一、常用的数量关系式1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数7、被减数-减数=差 被减数-差=减数 差+减数=被减数8、因数*因数=积 积÷一个因数=另一个因数9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 二、小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长) 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2、正方体 (V:体积 a:棱长 ) 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a3、长方形( C:周长 S:面积 a:边长 ) 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh5、三角形 (s:面积 a:底 h:高) 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高6、平行四边形 (s:面积 a:底 h:高) 面积=底*高 s=ah7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)*高÷2 s=(a+b)* h÷28、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径*л=2*л*半径 C=лd=2лr (2)面积=半径*半径*л9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长*高=ch(2лr或лd) (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积*高÷3 11、总数÷总份数=平均数 12、和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数13、和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数)14、差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数)15、相遇问题 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量17、利润与折扣问题 利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比 利息=本金*利率*时间 税后利息=本金*利率*时间*(1-20%) 三、常用单位换算 1、长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 2、体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 3、时间单位换算 1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时1时=60分 1分=60秒 1时=3600秒4、基本概念 第一章 数和数的运算 一 概念 (一)整数1 整数的意义 自然数和0都是整数。

2 自然数 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。

0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4 数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、。

2.小学六年级上册数学知识归纳(人教版)

建议你去网上搜一下,这几个网址里都有 给你一个样本: 人教版六年级数学上册知识点整理归纳 六年级上册数学知识点 第一单元 位置 1、什么是数对? ——数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右为列数和行数,即“先列后行”。 作用:确定一个点的位置。

经度和纬度就是这个原理。 例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点) ( 列 , 行 ) ↓ ↓ 竖排叫列 横排叫行 (从左往右看)(从下往上看) (从前往后看) 2、图形左右平移行数不变;图形上下平移列数不变。

3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。 第二单元 分数乘法 (一)分数乘法意义: 1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。 例如: *7表示: 求7个 的和是多少? 或表示: 的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以) 例如: * 表示: 求 的 是多少? 9 * 表示: 求9的 是多少? A * 表示: 求a的 是多少? (二)分数乘法计算法则: 1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分) (2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数) 2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。 (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数) (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。 (三)积与因数的关系: 一个数(0除外)乘大于1的数,积大于这个数。

a*b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。a*b=c,当b 1时,ca (a≠0 b≠0) ③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a 三、分数除法混合运算 1、混合运算用梯等式计算,等号写在第一个数字的左下角。

2、运算顺序: ①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。

②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。 注:(a±b)÷c=a÷c±b÷c 四、比:两个数相除也叫两个数的比 1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

注:连比如:3:4:5读作:3比4比5 2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。 例:12∶20= =12÷20= =0.6 12∶20读作:12比20 注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。 3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

3、化简比:化简之后结果还是一个比,不是一个数。 (1)、用比的前项和后项同时除以它们的最大公约数。

(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。

(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。 4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

5、比和除法、分数的区别: 除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算 分数 分子 分数线(——) 分母(不能为0) 分数的基本性质 分数是一个数 比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系 附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。 分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

五、分数除法和比的应用 1、已知单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙* (15* =9) 2、未知单位“1”的量用除法。

例: 甲是乙。

3.六年级上册数学1~8每单元总结

小学六年级数学上册知识点归纳 第一单元:位置 1、用数对确定点的位置,第一个数表示列,第二个数表示行。

如(3,5)表示(第三列,第五行) 2、图形左、右平移: 列变,行不变 图形上、下平移: 行变,列不变 第二单元 分数乘法 一、分数乘法的意义:2、分数乘分数是求一个数的几分之几是多少。例如:65*41表示求65的四分之一是多少。

1、分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。例如:65*5表示求5个65的和是多少? 二、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。

三、乘法中比较大小时规律:一个数(0除外)乘大于1的数,积大于这个数。一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。 四、分数混合运算的运算顺序和整数的运算顺序相同。

五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律: a * b = b * a 乘法结合律: ( a * b )*c = a * ( b * c ) 乘法分配律: ( a + b )*c = a*c + b*c 六、分数乘法的解决问题 (已知单位“1”的量,求单位“1”的几分之几是多少(具体量)用乘法) 一个数的几分之几= 一个数*几分之几 1、找单位“1”: 在分数句中分数的前面; 或 “占”、“是”、“比”的后面;2、看有没有多或少的问题; 3、写数量关系式技巧:(1)“的” 相当于 “*” “占”、“是”、“比”相当于“ = ” (2)分数前是“的”: 单位“1”的量*分数=具体量 (3)分数前是“多或少”的意思: 单位“1”的量*(1-分数)=具体量;单位“1”的量*(1+分数)=具体量 (已知具体量求单位“1”的量,用除法) 三、倒数 1、倒数的意义: 乘积是1的两个数互为倒数。

1的倒数是1; 0没有倒数。 强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。2 2、求倒数的方法: (1)、求分数的倒数:交换分子分母的位置。

(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

(4)、求小数的倒数: 把小数化为分数,再求倒数。 3、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

第三单元:分数除法 一、分数除法 1、分数除法的意义:分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。

乘法: 因数 * 因数 = 积 除法: 积 ÷ 一个因数 = 另一个因数 2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。 分数除法比较大小时规律:当除数大于1,商小于被除数;当除数小于1(不等于0),商大于被除数;当除数等于1,商等于被除数。

“[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。

二、分数除法解决问题 三、比和比的应用 1、两个数相除又叫做两个数的比。在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。比的后项不能为0. 例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示) 2、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。

3、区分比和比值 比:表示两个数的关系,可以写成比的形式,也可以用分数表示。 比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

4、比和除法、分数的联系与区别:(区别)除法是一种运算,分数是一个数,比表示两个数的关系。 比的前项相当与除法中的被除数,分数中的分子;比的后项相当与除法中的除数,分数中的分母;比号相当于除法中的除号,分数中的分数线;比值相当于除法的商,分数的分数值。

注意:体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。 (二)、比的基本性质 3 1、根据比、除法、分数的关系: 商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。 比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。根据比的基本性质,把比化成最简整数比。

3.化简比: (2)用求比值的方法。注意: 最后结果要写成比的形式。

如: 15∶10 = 15÷10 = 3/2 = 3∶2 5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

第五单元:百分数 一、百分数的意义和写法 1、百分数的意义:。

4.数学人教版六年级知识汇总要详细

第一单元《负数》易错点知识汇总及练习题 第一单元《负数》易错点知识汇总及练习题 知识汇总一、负数的定义 1、以前所学的所有数(0 除外)都是正数,也就是说正数前面的“+”是可以省略不写的! 2、负数的定义:在正数前面加上“-”就是负数。

3、负数前面必定有“-”如果前面不是“-” (可能没有符号或者是“+” )都是正数(0 除外) 。 4、0 既不属于正数,也不属于负数,它是正数和负数的分界。

练习: 1、将以下数字按要求分类 5 1 1 1.25、、-7、3、3.011……、-5 、0、2 、-0.03 3 2 7正数 2、写数下列数相对的负数形式负数自然数非正数3 1 7 、7、、3 、+ 2 + 0.33……、5 3 19二、负数的作用 1、负数是在人为规定正方向的前提下出现的。 2、负数常用来表示和正数意义相反的量。

3、在选择用正数还是负数表示时,首先看是否规定了正方向。 4、一般含有褒义的量用正数表示,含有贬义的量则用负数表示。

例:零上 5°用+5℃表示;零下 5°用-5℃表示。收入 2000 元用+2000 元表示;支出 500 元用-500 元表 示。

练习: 1、如果﹢20%表示增加 20%,那么﹣20%表示什么? 2、某日傍晚, 黄山的气温由上午的零上 2 摄氏度下降了 7 摄氏度, 这天傍晚黄山的气温是 3、正常水位为0,水位高于正常水位0.2记作_____________,低于正常水位0.3米记作______________。正常水位为5米,现在水位为6.3m 记作 ,低于正常水位2.5m 记作 。

摄氏度。4、按照要求回答:一个学生演示,教师提出要求规定向前走为正。

(1)向前走2步记作_________________。 (2)向后走5步记作_________________。

(3)“记作6步”他应怎么走? “记作-4步”呢?5、看图答题与北京时间相比,东京时间早1小时,记为+1时;巴黎时间晚7个小时,记为-7时。以北京时间为标准,表示出 其他时区的时间。

悉尼时间:____________ 伦敦时间:______________ 6、判断题 (1)0可以看成是正数,也可以看成是负数( (2)海拔-155米表示比海平面低155米( ) )(3)如果盈利1000元,记作+1000元,那么亏损200元就可记作-200元( (4)温度0℃就是没有温度( ))7、常见负数的意义 (1)地图上的负数: 中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁 番盆地,地图上标着-155米,你能说说8848米,-155米各表示什么吗?这两个高低是以谁为标准的? (2)收入与支出 收入:2600元, ( ) 教育支出:300元 ( ) 娱乐支出:500元 ( ) 。 (3)电梯间的负数 -3层是什么意思?是以谁为标准的? 8、以学校为起点,往东走为正,往西走位负,小明从学校走了+50m,又走了-100m,这时小明离学校的 距离是( ) 。

9、食品包装上常注明: “净重500±5g, 表示食品的标准质量是 ” ( ) 实际没袋最多不多于 , ( ) , 最少不少于( ) 。 三、负数的读法和写法 1、读法:在所读数的前面加上“负” 2、写法:在所写数的前面加上“-” 练习: 零上 16 摄氏度 零下 3 摄氏度 四、认识数轴 1、数轴的要素:正方向(箭头表示) 、原点(0 刻度) 、单位长度(刻度) 。

2、正方向:根据题意要求确定正方向,一般以向上或向右为正方向。 3、原点:也就是数字 0 所在的位置,一般根据表示数字的分布情况来确定,如果需要表示的正负数差 不多相等时原点在数轴中间;如果正数比负数多得多原点偏左;如果负数比正数多得多原点偏右。

4、单位长度:由所要表示多的大小来决定刻度之间距离的大小,如果数字偏大刻度距离可以适当小一 些,如果数字偏小刻度距离可以适当大一些。单位长度不一定每个刻度只能表示 1。

例:正方向写作: ( 写作: ()或( ))读作: 读作:-4-3单位 长度-2-1012345原点五、用数轴表示数 1、在已给数轴上表示数:根据数字在对应的刻度上描点表示。 2 2、对于非整数的表示:将刻度进一步细分如 ,需要将 0—1 之间线段分为 3 等分则 2 等分处为该数。

3 3、对于负数的表示:负数都在 0 的左面,正数都在 0 的右面。例:+3.5 在 3 和 4 中间,而-3.5 在-3 和 -4 中间。

练习: 1、在数轴上表示下列个数 1 1.75 -4 313 450-3.22、写出下列各点表示的数 A B -8 -6 -4C -2D 0 2E 4F 6 8G 10六、根据数轴比较数的大小 1、0 左边的数都是负数,0 右边的数都是正数; 所有的正数都大于负数;所有的负数都小于正数 2、在数轴上越靠右边的数越大,越靠左边的数越小; 3、负数比较大小,不考虑负号,数字部分大的数反而小; 4、0 大于所有的负数,小于所有的正数。 练习: 1、比较大小 -6.5 -6.6 1.5 4 7 0 9 7 -9.83 2负数 < 0 < 正数0 3 8-0.05 3 5 0.5-2.75 1 10 5 8+2.75 -0.1-2.5-3.5---10.11.01-0.50.6252、在数轴上表示下列个数,再按从小到大的顺序排列 5 -3.5 5 2 -1.75 1.25 0 -2 1 23、在括号里填上适当的数。

① 5,2,-1,-4,( ),( ) )② -10,-5,0,5,10,(),(第一单元自我检测题一、填空题 1. 写出下面温度计上显示的气温各是多少,并读一读。2. 一栋大楼,地面以上第 5 层记作+5 层,地面以下第二层记作( )层,地面以下第一层记作( 3. 汽车前进 36 米记作+36 米,后退 10 米记作( 。

5.六年级上册数学知识点总结

1.用数对表示物体的位置。

2.在方格纸上用数对确定位置。 分数乘整数的意义及计算方法 例1 分数乘整数的意义及计算方法 例2 分数乘整数的简便算法 分数乘分数的意义及计算方法 例3 分数乘分数的意义及计算方法 例4 分数乘分数的简便算法 运算定律、简便计算 例5 分数乘法的运算定律 例6 分数混合运算的简便计算 分数乘整数的意义及计算方法 例1 分数乘整数的意义及计算方法 例2 分数乘整数的简便算法 分数乘分数的意义及计算方法 例3 分数乘分数的意义及计算方法 例4 分数乘分数的简便算法 运算定律、简便计算 例5 分数乘法的运算定律 例6 分数混合运算的简便计算 例1 倒数的意义 例2 倒数的求法 例1 分数除法的意义 例2 分数除法的计算方法 例3 例4 分数四则混合运算例1 己知一个数的几分之几是多少,求这个数的问题 例2 稍复杂的己知一个数的几分之几是多少,求这个数的问题 第一小节 比的意义 第二小节 例1 比的基本性质 第三小节 例2 比的应用 认识圆 例1 用一般的物体画圆 例2 通过折圆的操作活动认识圆 用圆规画圆 例3 认识圆是轴对称图形 圆的周长 探索圆的周长公式、圆周率 例1 圆的周长的计算 圆的面积 探索圆的面积公式 例1 圆的面积计算 例2 圆形的面积计算。

6.小学六年级数学知识点

小学数学复习考试知识点汇总 一、小学生数学法则知识归类 (一)笔算两位数加法,要记三条 1、相同数位对齐; 2、从个位加起; 3、个位满10向十位进1。

(二)笔算两位数减法,要记三条 1、相同数位对齐; 2、从个位减起; 3、个位不够减从十位退1,在个位加10再减。 (三)混合运算计算法则 1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算; 2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减; 3、算式里有括号的要先算括号里面的。

(四)四位数的读法 1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推; 2、中间有一个0或两个0只读一个“零”; 3、末位不管有几个0都不读。 (五)四位数写法 1、从高位起,按照顺序写; 2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。

(六)四位数减法也要注意三条 1、相同数位对齐; 2、从个位减起; 3、哪一位数不够减,从前位退1,在本位加10再减。 (七)一位数乘多位数乘法法则 1、从个位起,用一位数依次乘多位数中的每一位数; 2、哪一位上乘得的积满几十就向前进几。

(八)除数是一位数的除法法则 1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数; 2、除数除到哪一位,就把商写在那一位上面; 3、每求出一位商,余下的数必须比除数小。 (九)一个因数是两位数的乘法法则 1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐; 2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐; 3、然后把两次乘得的数加起来。

(十)除数是两位数的除法法则 1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小, 2、除到被除数的哪一位就在哪一位上面写商; 3、每求出一位商,余下的数必须比除数小。 (十一)万级数的读法法则 1、先读万级,再读个级; 2、万级的数要按个级的读法来读,再在后面加上一个“万”字; 3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

(十二)多位数的读法法则 1、从高位起,一级一级往下读; 2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字; 3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。 (十三)小数大小的比较 比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。

(十四)小数加减法计算法则 计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。 (十五)小数乘法的计算法则 计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

(十六)除数是整数除法的法则 除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。 (十七)除数是小数的除法运算法则 除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

(十八)解答应用题步骤 1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么; 2、确定每一步该怎样算,列出算式,算出得数; 3、进行检验,写出答案。 (十九)列方程解应用题的一般步骤 1、弄清题意,找出未知数,并用X表示; 2、找出应用题中数量之间的相等关系,列方程; 3、解方程; 4、检验、写出答案。

(二十)同分母分数加减的法则 同分母分数相加减,分母不变,只把分子相加减。 (二十一)同分母带分数加减的法则 带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

(二十二)异分母分数加减的法则 异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。 (二十三)分数乘以整数的计算法则 分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

(二十四)分数乘以分数的计算法则 分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。 (二十五)一个数除以分数的计算法则 一个数除以分数,等于这个数乘以除数的倒数。

(二十六)把小数化成百分数和把百分数化成小数的方法 把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号; 把百分数化成小数,把百分号去掉,同时小数点向左移动两位。 (二十七)把分数化成百分数和把百分数化成分数的方法 把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数; 把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。

二、小学数。

7.六年级数学有哪些知识点

上册:

1、第一单元《位置》

2、第二单元《分数乘法》

分数乘法

解决问题

倒数的认识

整理和复习

3、第三单元《分数除法》

分数除法

解决问题

比和比的应用

整理和复习

4、第四单元《圆》

圆的认识

圆的周长

圆的面积

整理和复习

确定起跑线

5、第五单元《百分数》

百分数的意义和写法

百分数和分数、小数的互化

用百分数解决问题

整理和复习

6、第六单元《统计》

扇形统计图

合理存款

7、第七单元《数学广角》

鸡兔同笼

8、第八单元《总复习》

下册:

一、负数

二、圆柱与圆锥

1.圆柱 圆柱的认识 圆柱的表面积 圆柱的体积

2.圆锥 第二单元整理和复习

三、比例

1.比例的意义和基本性质

2.正比例和反比例的意义

3.比例的应用

比例尺

图形的放大与缩小

用比例解决问题

第三单元整理和复习

综合应用:自行车里的数学

四、统计

五、数学广角

综合应用:节约用水

六、整理和复习

1.数与代数

数的认识

数的运算

式与方程

常见的量

比和比例

数学思考

2.空间与图形

图形的认识与测量

8.求小学六年级数学人教版重点知识

每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4 单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5 工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数*因数=积 积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1 正方形 C周长 S面积 a边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2 正方体 V:体积 a:底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 10 圆锥体 v:棱长 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3 长方形 C周长 S面积 a边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4 长方体 V: 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么.com/s:体积 h:高 s;底面积 r:底面半径 c: 。

9.六年级 上 数学 知识点梳理

第一单元位置 (1)用数据表示位置的方法: 先横着数,看在第几行,这个数就是数据中的第一个数;再竖着数,看在第几列,这个数就是数据中的第二个数。

(第几行,第几列) 第二单元分数乘法 (1)分数乘以整数: 整数与分子的乘积作分子,分母不变。(能约分的可以先约分,再计算) (2)分数乘以分数: 用分子乘以分子的积作分子,分母乘以分母的积做分子。

(能约分的可以先约分,再计算) (3)分数乘加、乘减混合运算顺序: Ⅰ、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。 Ⅱ、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法后算加、减法。

Ⅲ、在有括号的算式里,要先算括号里面的,再算括号外面的。(4)分数乘法运算定律 ⒈ 交换两个因数的位置,积不变,这叫做乘法交换律。

a*b=b*a ⒉ 先乘前两个数,再乘第三个数;或者先乘后两个数,再乘第一个数,这叫做乘法结合律。 (a*b)*c=a*( b*c) ⒊ 两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

(a+b)*c=a*c+b*c ⒋ 两个数的差与一个数相乘,可以先把它们与这个数分别相乘,再相减,这叫做乘法分配律。 (a-b)*c=a*c-b*c5.. 25*4=100 125*8=1000 25*8=200 125*4=500(5) 规律(比较大小要用到): 1、一个数(0除外)乘以大于1的数,积大于这个数; 2、一个数(0除外)乘以小于1的数(0除外),积小于这个数;3、一个数(0除外)乘以1,积等于这个数。

第一个数 (6)谁是谁的几分之几,就用第一个数除以第二个数,用分数表示就是 第二个数 。(7)求一个数的几倍,一个数*几倍; 求一个数的几分之几是多少,一个数*几分之几。

(8)倒数 概念:乘积是1的两个数互为倒数。强调:①乘积必须是1。

②只能是两个数。③倒数是表示两个数的关系,他不是一个数。

第三单元分数除法 (1)乘法:因数*因数=积 除法:积÷一个因数=另一个因数 (2)分数除法的意义: 分数除法与整数除法一样,表示已知两个因数的积和其中一个因数,求另一个因数的运算。 (3)分数除法的方法: 甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

(4)规律(比较大小要用到): 1、当除数大于1,商小于被除数; 2、当除数小于1(不等于0),商大于被除数; 3、当除数等于1,商等于被除数。(5)“【 】”叫做中括号。

一个算式里,如果既有小括号,又有中括号,要先算小括号里面的。(6)解决"已知一个数的几分之几是多少,求这个数"的问题: 1》列方程的方法 用方程解应用题格式:1、解。

(写“解”字,打冒号。)1、设。

(设未知数,根据题目设未知数,问什么设什么。)2、找。

(找等量关系)3、列。(根据等量关系列方程,并解方程)4、答。

2》列除法算式 ①分析数量关系。 一个数 * 几/几 = 具体量 单位”1“的量 * 几/几 = 具体量 单位”1“的量 = 具体量 ÷ 几/几 ②列式计算。

(7)比的概念:两个数相除又叫做两个数的比。(8)在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。例如 15 : 10 = 15÷10= 3/2 (比值通常用分数表示,也可以用小数或整数表示) ∶ ∶ ∶ 前项 比号 后项 比值 注意:1、根据比与除法、分数的关系,可以理解比的后项不能为0; 2、在体育比赛中出现两队的分是2:0.,1:0等,这只是一种记分的形式,不表示两个数相除的关系。

(9)比的基本性质:比的前项和后项同事乘以或除以相同的数(0除外),比值不变。(10) 根据比的性质可以把比值化成最简整数比。

当一个比的前后项不是整数时,把比的前后项扩大成整数在化成最简整数比。(11)比的应用:前项+后项=总共的份数 总共的具体量 * 前项/总共的份数 = 前项的物体数 总共的具体量 * 后项/总共的份数 = 后项的物体数 前项的物体数 ÷ 前项/总共的份数 = 总共的具体量 后项的物体数 ÷ 后项/总共的物体量 = 总共的具体量 第四单元圆 (1)把一个圆重合对折几次就会出现一些折痕,这些折痕相交于圆中心的一点,这点叫做圆心(固定的点)。

一般用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。

通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。(2)在同一个圆里,所有的半径的长度都相等,所有的直径的长度都相等。

(3)在同一个圆里,直径的长度是半径的2倍,半径长度是直径的一半。d=2r r=1/2d (4)圆是轴对称图形。

直径所在的直线是圆的对称轴,圆的对称轴有无数条。(5)任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母 (pai)表示。

它是一个无限不循环小数, =3.1415926535------但在实际应用中一般只取它的近似值,即 =3.14 。如果用C表示圆的周长,就有 C= d 或 C=2 r(6)圆的面积公式:圆的面积 = r*r = r2 强调:①r2 表示r*r 。

②长度单位与面积单位的统一 。 ③计算时,可以不写面积公式。

(7)环形面积:大圆面积 — 小圆面积( 或 外圆面积 — 内圆面积) (8)圆心角:顶点在圆心的角叫做圆心角。圆周角360°。

第五单元百分数 (1)概念:像上面这样的数,如18%、50%、64.2%-----叫做百分数。

小学数学六年级知识点总结