初中二年级下册数学知识点

bdqnwqk1年前学者7

1.初二下册数学知识点总结

第一章 一次函数 1 函数的定义,函数的定义域、值域、表达式,函数的图像 2 一次函数和正比例函数,包括他们的表达式、增减性、图像 3 从函数的观点看方程、方程组和不等式 第二章 数据的描述 1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点 条形图特点: (1)能够显示出每组中的具体数据; (2)易于比较数据间的差别 扇形图的特点: (1)用扇形的面积来表示部分在总体中所占的百分比; (2)易于显示每组数据相对与总数的大小 折线图的特点; 易于显示数据的变化趋势 直方图的特点: (1)能够显示各组频数分布的情况; (2)易于显示各组之间频数的差别 2 会用各种统计图表示出一些实际的问题 第三章 全等三角形 1 全等三角形的性质: 全等三角形的对应边、对应角相等 2 全等三角形的判定 边边边、边角边、角边角、角角边、直角三角形的HL定理 3 角平分线的性质 角平分线上的点到角的两边的距离相等; 到角的两边距离相等的点在角的平分线上。

第四章 轴对称 1 轴对称图形和关于直线对称的两个图形 2 轴对称的性质 轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线; 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线; 线段垂直平分线上的点到线段两个端点的距离相等; 到线段两个端点距离相等的点在这条线段的垂直平分线上 3 用坐标表示轴对称 点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y). 4 等腰三角形 等腰三角形的两个底角相等;(等边对等角) 等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一) 一个三角形的两个相等的角所对的边也相等。(等角对等边) 5 等边三角形的性质和判定 等边三角形的三个内角都相等,都等于60度; 三个角都相等的三角形是等边三角形; 有一个角是60度的等腰三角形是等边三角形; 推论: 直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。

在三角形中,大角对大边,大边对大角。 第五章 整式 1 整式定义、同类项及其合并 2 整式的加减 3 整式的乘法 (1)同底数幂的乘法: (2)幂的乘方 (3)积的乘方 (4)整式的乘法 4 乘法公式 (1)平方差公式 (2)完全平方公式 5 整式的除法 (1)同底数幂的除法 (2)整式的除法 6 因式分解 (1)提共因式法 (2)公式法 (3)十字相乘法 初二下册知识点 第一章 分式 1 分式及其基本性质 分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变 2 分式的运算 (1)分式的乘除 乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2) 分式的加减 加减法法则:同分母分式相加减,分母不变,把分子相加减; 异分母分式相加减,先通分,变为同分母的分式,再加减 3 整数指数幂的加减乘除法 4 分式方程及其解法 第二章 反比例函数 1 反比例函数的表达式、图像、性质 图像:双曲线 表达式:y=k/x(k不为0) 性质:两支的增减性相同; 2 反比例函数在实际问题中的应用 第三章 勾股定理 1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方 2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。 第四章 四边形 1 平行四边形 性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形; 两组对角分别相等的四边形是平行四边形; 对角线互相平分的四边形是平行四边形; 一组对边平行而且相等的四边形是平行四边形。 推论:三角形的中位线平行第三边,并且等于第三边的一半。

2 特殊的平行四边形:矩形、菱形、正方形 (1) 矩形 性质:矩形的四个角都是直角; 矩形的对角线相等; 矩形具有平行四边形的所有性质 判定: 有一个角是直角的平行四边形是矩形; 对角线相等的平行四边形是矩形; 推论: 直角三角形斜边的中线等于斜边的一半。 (2) 菱形 性质:菱形的四条边都相等; 菱形的对角线互相垂直,并且每一条对角线平分一组对角; 菱形具有平行四边形的一切性质 判定:有一组邻边相等的平行四边形是菱形; 对角线互相垂直的平行四边形是菱形; 四边相等的四边形是菱形。

(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。 3 梯形:直角梯形和等腰梯形 等腰梯形:等腰梯形同一底边上的两个角相等; 等腰梯形的两条对角线相等; 同一个底上的两个角相等的梯形是等腰梯形。

第五章 数据的分析 加权平均数、中位数、众数、极差、方差。

2.初二数学归纳

1、幂的乘方,底数不变,指数相同。

2、同底数幂相乘,底数不变,指数相加。 3、幂的乘方,底数不变,指数相乘。

4、积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。 5、单向式与单向式相乘,把它们的系数、相同字母分别相乘,对于只在一个单向式里含有的字母,则连同它的指数作为积的因式。

6、单向式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。 7、多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

8、两个数的和与这两个数的差的积=这两个数的平方差。这个公式叫做(乘法的)平方差公式。

9、两数和(或差)的平方=它们的平方和,加(或减)它们积的2倍。这两个公式叫做(乘法的)完全平方公式10、同底数幂相加,底数不变,指数相减。

11、任何不等于0的数的0次幂都等于1.12、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)13.有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。 14.有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。

15.有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”) 16.斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2 ) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a x1*x2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2p直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h。

3.初二下册全部科目的知识点归纳

二年级数学下册知识点梳理 一、有余数除法 1.有余数除法以及余数的含义; 2.掌握有余数除法的求商方法;知道余数要比除数小;用竖式计算除数和商都是一位数的有余数除法的式题; 3.用有余数除法解决相关的简单实际问题; 二、认数 1.认识千以内数的计数单位以及相邻单位间的进率;知道千以内的数位名称及其顺序; 2.会读、写千以内的数,能按指定要求从某数起数到一千; 3.能根据千以内数的组成及含义,正确口算整百数加、减整百数以及整百数加整十数与相应的减法; 4.能合理灵活地比较千以内数的大小; 三、分米和毫米 1.认识长度单位分米和毫米,初步建立实际长度的表象; 2.知道分米、毫米与米、厘米的关系,会进行有关长度单位的换算; 3.会用分米、毫米作单位测量或描述物体的长度; 四、加法 1.理解三位数加三位数的笔算方法;能笔算和在1000以内的两个数相加以及三个数连加的式题; 2.理解加法的验算方法,会用交换加数位置再算一遍的方法验算; 3.正确口算整十数加整十数(和超过100)的式题; 4.学会判断一个三位数大约接近几百;会估算两个三位数相加的和大约几百,会用估算解决简单的实际问题; 5.理解“求比一个数多(少)几的数是多少”的简单实际问题及其相应的数量关系,并能应用加、减法运算正确解答; 五、认识方向 1.认识东南、东北、西南、西北,能在现实情境或平面图上辨认上述方向; 2.会用上述方位词描述物体间的关系; 3.运用学过的方位词描述简单的行走路线; 六、减法 1.三位数减三位数的计算方法;被减数在1000以内的笔算减法; 2.一百几十减几十的口算; 3.会用差加减数的方法验算减法; 4.会把被减数和减数看着与其接近的整百数进行估算,体会估算的应用价值; 七、认识角 1.初步认识角,知道角的各部分名称;能指出物体表面的角,能在平面图形中辨认出角; 2.认识角有大小,能直观区分角的大小; 3.认识直角、锐角、和钝角,借助三角尺等工具上的直角判断上述各角; 八、乘法 1.掌握两位数与一位数相乘的计算方法;能正确笔算两位数乘一位数; 2.整十数乘一位数以及不进位的两位数乘一位数口算; 3.两位数乘一位数的估算; 4.理解倍的含义,能解决“求一个数是另一个数的几倍”以及“求一个数的几倍是多少”的简单实际问题; 5.用乘法和加(减)法两步计算解决实际问题,初步掌握分析数量关系的基本方法; 九、统计 1.学会用统计表按不同标准分类整理相关的数据;。

4.初二下册全部科目的知识点归纳

二年级数学下册知识点梳理 一、有余数除法 1.有余数除法以及余数的含义; 2.掌握有余数除法的求商方法;知道余数要比除数小;用竖式计算除数和商都是一位数的有余数除法的式题; 3.用有余数除法解决相关的简单实际问题; 二、认数 1.认识千以内数的计数单位以及相邻单位间的进率;知道千以内的数位名称及其顺序; 2.会读、写千以内的数,能按指定要求从某数起数到一千; 3.能根据千以内数的组成及含义,正确口算整百数加、减整百数以及整百数加整十数与相应的减法; 4.能合理灵活地比较千以内数的大小; 三、分米和毫米 1.认识长度单位分米和毫米,初步建立实际长度的表象; 2.知道分米、毫米与米、厘米的关系,会进行有关长度单位的换算; 3.会用分米、毫米作单位测量或描述物体的长度; 四、加法 1.理解三位数加三位数的笔算方法;能笔算和在1000以内的两个数相加以及三个数连加的式题; 2.理解加法的验算方法,会用交换加数位置再算一遍的方法验算; 3.正确口算整十数加整十数(和超过100)的式题; 4.学会判断一个三位数大约接近几百;会估算两个三位数相加的和大约几百,会用估算解决简单的实际问题; 5.理解“求比一个数多(少)几的数是多少”的简单实际问题及其相应的数量关系,并能应用加、减法运算正确解答; 五、认识方向 1.认识东南、东北、西南、西北,能在现实情境或平面图上辨认上述方向; 2.会用上述方位词描述物体间的关系; 3.运用学过的方位词描述简单的行走路线; 六、减法 1.三位数减三位数的计算方法;被减数在1000以内的笔算减法; 2.一百几十减几十的口算; 3.会用差加减数的方法验算减法; 4.会把被减数和减数看着与其接近的整百数进行估算,体会估算的应用价值; 七、认识角 1.初步认识角,知道角的各部分名称;能指出物体表面的角,能在平面图形中辨认出角; 2.认识角有大小,能直观区分角的大小; 3.认识直角、锐角、和钝角,借助三角尺等工具上的直角判断上述各角; 八、乘法 1.掌握两位数与一位数相乘的计算方法;能正确笔算两位数乘一位数; 2.整十数乘一位数以及不进位的两位数乘一位数口算; 3.两位数乘一位数的估算; 4.理解倍的含义,能解决“求一个数是另一个数的几倍”以及“求一个数的几倍是多少”的简单实际问题; 5.用乘法和加(减)法两步计算解决实际问题,初步掌握分析数量关系的基本方法; 九、统计 1.学会用统计表按不同标准分类整理相关的数据;。

5.八年级 数学知识点

八年级上册数学知识点!!!(急) 悬赏分:0 - 解决时间:2007-2-15 16:04 八年级上学期的数学知识点每一章最好都有,语言要简练 提问者: 霓虹漫漫 - 魔法学徒 一级 最佳答案 一.整式 1.1:加减 1.2:乘法 1.3:公式:1.平方差 2.完全平方 1.4:除法 1.5:因式分解 二.分式 2.1:定义 2.2:运算 2.3:方程 三.反比例函数 3.1:定义 3.2:利用反比例函数解决实际问题 四.轴对称 4.1:定义 4.2:轴对称变换 4.3:等腰三角形 五.总复习 回答者: 郑长春123 - 门吏 二级 2-15 14:09 ======================================================= 知 识 点 能力要求 了解 理解 掌握 应用 轴对称图形、轴对称的概念 √ 轴对称图形的对称轴及轴对称的对称轴、对称点 √ 轴对称图形与轴对称的区别和联系 √ 线段垂直平分线的定义和性质 √ 成轴对称的两个图形的性质 √ 利用轴对称的性质作简单的轴对称 √ 利用轴对称进行图案设计 √ 对称图案中颜色的对称 √ 利用网格设计轴对称图案 √ 线段是轴对称图形 √ 线段的垂直平分线的性质 √ 角是轴对称图形 √ 角平分线的性质 √ 等腰三角形的轴对称性 √ 等腰三角形的性质 √ √ 等腰三角形三线合一的性质 √ 运用等腰三角形的性质解决问题 √ 等边三角形及直角三角形的性质 √ 梯形及等腰梯形的概念 √ 梯形及等腰梯形的性质 √ 梯形辅助线的几种作法 √ 等腰梯形同一底上的两个内角相等、两条对角线相等 √ 等腰梯形是轴对称图形 √ 等腰梯形的判定 √ 苏科版八年级数学(上)知识点系目表 2008.9 勾股定理 √ 面积法证明勾股定理 √ 直角三角形的判定条件 √ 利用直角三角形的判定条件判定三角形 √ 勾股定理的实际应用 √ 勾股数的概念 √ 平方根的概念 √ 求一个非负数的平方根 √ 平方根的性质 √ 开平方的概念 √ , √ 立方根的概念 √ 求一个实数的立方根 √ 立方根的性质 √ 开立方的概念 √ 无理数、实数的概念 √ 实数的分类 √ 实数的大小比较 √ 用计算器计算 √ 实数范围内的运算 √ 近似数的概念 √ 根据要求取近似数 √ 有效数字的概念 √ 1.旋转的基本性质。

√ 2.按要求作出简单的平面图形通过旋转后的形 √ 3.中心对称及中心对称图形的有关概念和性质 √ 4.画出已知图形成中心对称,会设计中心对称案 √ 5.平行四边形的性质; √ 6.运用平行四边形的性质解决实际问题 √ 7.平行四边形的判定方法 √ 8.运用平行四边形的判定和性质解决实际问题; √ 9矩形、菱形、正方形的概念及其特殊的性质。 √ 10.矩形、菱形、正方形的判断方法,运用矩形、菱形、正方形的判定和性质解决实际问题 √ 11.三角形中位线概念、性质. √ 12.会利用三角形的中位线的性质解决有关问题. √ 13.梯形的中位线的概念和性质; √ 14.能应用梯形的中位线的性质解决有关问题 √ 15.理解镶嵌的意义,进行简单的镶嵌设计 √ 1、感受可以用多种方法记录、描绘后表示变化的数量及变化规律 √ 2、能根据图表所提供的信息,探索数量变化的某些联系 √ 3、会描述物体运动的路径 √ 4、能根据经纬度确定移动物体位置变化的路径 √ 5、会用变化的数量描绘物体位置的变化 √ 6、领会实际模型中确定位置的方法,会正确画出平面直角坐标系 √ 7、在给定的直角坐标系中,根据点的坐标描出点的位置 √ 8、在给定的直角坐标系中,会由点的位置写出点的坐标 √ 9、在同一直角坐标系中,探索位置变化与数量变化的关系 √ 10、在同一直角坐标系中,探索图形位置的变化与点的坐标变化的关系 √ 11、能建立适当直角坐标系,将实际问题数学化,并会用直角坐标系解决问题 √ 常量、变量意义 √ 函数概念和三种表示方法 √ 结合图象分析实际问题中的函数关系 √ 确定自变量的取值范围 √ 求函数值 √ 正比例函数概念 √ 一次函数概念 √ 根据已知条件确定一次函数解析式 √ 会画一次函数图象 √ 正比例函数图象性质 √ 一次函数图象性质 √ 一次函数图象的性质(k>0或k<0图象的变化) √ 直线在平面直角坐标系中的平移 √ 直线与直线的对称 √ 直线的旋转 √ 平面直角坐标系中的面积 √ 一次函数解决实际问题 √ 对变量的变化规律进行初步预测 √ 图象发求二元一次方程组的解 √ 1.算术平均数和加权平均数的意义。

√ 2.求一组数据的算术平均数和加权平均数。 √ 3.权的差异对平均数的影响。

√ 4.算术平均数与加权平均数的联系与区别。 √ 5.利用算术平均数和加权平均数解决实际问题。

√ 6.中位数和众数代表的概念。 √ 7.根据所给的信息求出一组数据的中位数、众数。

√ 8.平均数、中位数、众数的区别与联系。 √ 9选择合适的统计量表示数据的集中程度。

√ 10.利用计算器求一组数据的平均数。 √ 11.经历数据的收集、加工、整理和描述的统计过程,提高数据处理能力,发展统计意识。

√。

6.【八年级数学下册的重点知识】

二次根式属于“数与代数”领域的内容,它是在学生学习了平方根、立方根等内容的基础上进行的,是对七年级上册“实数”“代数式”等内容的延伸和补充.二次根式的运算以整式的运算为基础,在进行二次根式的有关运算时,所使用的运算法则与整式、分式的相关法则类似;在进行二次根式的加减时,所采用的方法与合并同类项类似;在进行二次根式的乘除时,所使用的法则和公式与整式的乘法运算法则及乘法公式类似.这些都说明了前后知识之间的内在联系.本章的主要内容有二次根式,二次根式的性质,二次根式的运算(根号内不含字母、不含分母有理化). 一、教科书内容和教学目标本章的教学要求. (1)了解二次根式的概念,了解简单二次根式的字母取值范围; (2)了解二次根式的性质; (3)了解二次根式的加、减、乘、除的运算法则; (4)会用二次根式的性质和运算法则进行有关实数的简单四则运算(不要求分母有理化).本章教材分析. 课本在回顾算术平方根的基础上,通过“合作学习”的三个问题引出二次根式的概念,并说明以前学的数的算术平方根也叫做二次根式.在例题和练习的安排上,着重体现三个方面的要求:一是求二次根式中字母的取值范围;二是求二次根式的值;三是用二次根式表示有关的问题. 对于二次根式的性质,课本利用第4页图1-2给出的.该图的含义是如果正方形的面积为,那么这个正方形的边长就是;反之,如果正方形的边长为,那么这个正方形的面积就是,因此就有.从而得出二次根式的第一个性质.至于第二个性质,可以通过学生的计算来发现,所以课本安排了一个“合作学习”,让学生自己去发现和归纳.该节第一课时的重点在于对这两个性质的理解和运用,例题和练习的设计就围绕这两个性质展开.第二课时是学习二次根式的另外两个性质,课本安排两组练习,意在让学生通过自己的尝试,与同学的合作交流来发现这两个性质.通过两个例题和一组练习,使学生知道运用二次根式的性质,可以简化实数的运算,也可以对结果是二次根式的式子进行化简.课本第9页的“探究活动”既是对二次根式的运用,更在于培养学生的一种探究能力,观察、发现、归纳等能力. 第1.3节二次根式的运算,包含了二次根式的加、减、乘、除四种运算以及简单应用,课本安排了3个课时,逐步推进,逐渐综合.第一课时侧重于两个(相当于两个单项式)二次根式的乘除,其法则是从二次根式的性质得到的,比较自然.例1是对两个运算法则的直接运用,让学生有一个对法则的熟悉和熟练过程;例2是一个结合实际问题的运用,其中有勾股定理和三角形的面积计算.第二课时是二次根式的加减和乘除混合运算,出现了类似单项式乘以多项式、多项式乘以多项式(包括乘法公式、乘方)、多项式除以单项式的运算.课本中没有出现“同类二次根式”的概念,只是提到“类似于合并同类项”“相同二次根式的项”,这种类比的方法,学生是能够理解的,也能够与整式一样进行运算.第三课时是二次根式运算的应用.例6的数字看上去比较复杂,其目的是为了二次根式的运算的应用;例7综合运用了直角三角形的有关知识、图形的分割、面积的计算等,其解答过程较长,也是对二次根式知识的综合运用. 二、本章编写特点注重学生的观察、分析、归纳、探究等能力的培养. 在本章知识的呈现方式上,课本比较突出地体现了“问题情境——数学活动——概括——巩固、应用和拓展”的叙述模式,这种意图大多通过“合作学习” 来完成.“合作学习”为学生创设了从事观察、猜测、验证交流等数学活动的机会.如第5页先让学生计算三组与的具体数值,再议一议与的关系,然后得出二次根式的性质“=”.二次根式的其他几个性质,课本中也是采用类似的方法.在学习了二次根式的有关性质后,课本又设计了一个“探究活动”,通过化简有关的二次根式,让学生自己去发现规律、表示规律、验证规律,并与同伴交流.所有这些都是教材编写的一种导向,以引起教与学方式上的一些的改变.注重数学知识与现实生活的联系. 教材力求克服传统观念上学习二次根式的枯燥性,避免大量纯式子的化简或计算,适当穿插实际应用或赋予式子一些实际意义.无论是学习二次根式的概念,还是学习二次根式的性质和运算,都尽可能把所学的知识与现实生活相联系,重视运用所学知识解决实际问题能力的培养.如二次根式概念的学习,课本通过三个实际问题来引入,其目的就是关注概念的实际背景与形成过程,克服机械记忆概念的学习方式.又如,课本第3页,用二次根式表示轮船航行的的距离,第11页求路标的面积,第21页花草的种植面积问题等.特别是在二次根式的运算中,专门安排了一节内容学习二次根式运算的应用,例6选取的背景是学生熟悉的滑梯,例7选取的背景是学生感兴趣的剪纸条,以及作业中的堤坝、快艇问题等等.充分利用图形,使代数与几何有机结合. 对于数与代数的内容,教材重视有关内容的几何背景,运用几何直观帮助学生理解、解决有关代数问题,是教材的一个编写特点,也是对教学的一种导向.本章中,如二次根式与直角三角形有关边的计算密切相关,课本在这方面选取了。

7.新人教版八年级下册数学知识点总结(全册,详细一点更好)

二次根式 【知识回顾】 1. 二次根式: 式子 a ( a ≥ 0 )叫做二次根式。

2. 最简二次根式: 必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3. 同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4. 二次根式的性质: ( 1 ) ( a ) 2 = a ( a ≥ 0 ) ; ( 2 )   a a 2 5. 二次根式的运算: ( 1 )因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术 根代替而移到根号外面; 如果被开方数是代数和的形式, 那么先解因式, • 变形为积的形式, 再移 因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. ( 2 )二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. ( 3 )二次根式的乘除法:二次根式相乘(除) ,将被开方数相乘(除) ,所得的积(商)仍作 积(商)的被开方数并将运算结果化为最简二次根式. ab = a · b ( a≥0 , b≥0 ) ; b b a a  ( b≥0 , a>0 ) . ( 4 )有理数的加法交换律、结合律,乘法交换律及结合律, • 乘法对加法的分配律以及多项 式的乘法公式,都适用于二次根式的运算。

8.八年级下册数学知识点概括

第一章 一元一次不等式和一元一次不等式组一、一般地,用符号“”(或“≥”)连接的式子叫做不等式。

能使不等式成立的未知数的值,叫做不等式的解. 不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解集的过程叫解不等式.由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. (注:移项要变号,但不等号不变。)

性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质<1>、若a>b, 则a+c>b+c;<2>、若a>b, c>0 则ac>bc若c<0, 则acb,则bb,且b>c,则a>c三、解不等式的步骤:1、去分母; 2、去括号; 3、移项合并同类项; 4、系数化为1。 四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集。

五、列一元一次不等式组解实际问题的一般步骤:(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。六、常考题型: 1、求4x-6 7x-12的非负数解. 2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a 的范围.3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。

第二章 分解因式一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2±2ab+b2=(a±b)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。 1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解与整式乘法是相反方向的变形。

三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 分解因式的方法:1、提公因式法。2、运用公式法。

第三章 分式注:1°对于任意一个分式,分母都不能为零. 2°分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母. 3°分式的值为零含两层意思:分母不等于零;分子等于零。( 中B≠0时,分式有意义;分式 中,当B=0分式无意义;当A=0且B≠0时,分式的值为零。)

常考知识点:1、分式的意义,分式的化简。2、分式的加减乘除运算。

3、分式方程的解法及其利用分式方程解应用题。第四章 相似图形一、定义 表示两个比相等的式子叫比例.如果a与b的比值和c与d的比值相等,那么 或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项. 如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成 = ,其中,线段AB、CD分别叫做这两个线段比的前项和后项.如果把 表示成比值k,则 =k或AB=k。

9.八年级数学知识点 文字版.

八年级下数学知识点总汇一.分式复习要点1、形如AB(A、B都是整式,且B中含有字母,B≠0)的式子叫做分式。

整式和分式统称有理式。2、分母≠0时,分式有意义。

分母=0时,分式无意义。3、分式的值为0,要同时满足两个条件:分子=0,而分母≠0。

4、分式基本性质:分式的分子、分母都乘以或除以同一个不为0的整式,分式的值不变。5、分式、分子、分母的符号,任意改变其中两个的符号,分式的值不变。

6、分式四则运算1)分式加减的关键是通分,把异分母的分式,转化为同分母分式,再运算.2)分式乘除时先把分子分母都因式分解,然后再约去相同的因式。3)分式的混合运算,注意运算顺序及符号的变化,4)分式运算的最后结果应化为最简分式或整式.7、分式方程1)分式化简与解分式方程不能混淆.分式化简是恒等变形,不能随意去分母.2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根。

3)解有关应用题的步骤和列整式方程解应用题的步骤是一样的:设、列、解、验、答。二. 函数及图象的复习要点1、规定了原点、正方向和单位长度的直线叫数轴。

数轴上的点与实数一一对应。数轴上的点A、B的坐标为x1、x2, 则AB= 。

2、具有公共原点且互相垂直的两条数轴就构成平面直角坐标系。坐标平面内的点与有序实数对一一对应。

3、坐标轴上的点不属于任何象限。x轴上的点纵坐标y=0;y轴上的点横坐标x=0。

第一象限内的点x>0,y>0;第二象限内的点x<0,y>0;第三象限内的点x<0,y<0;第四象限内的点x>0,y<0;由此可知,x轴上方的点,纵坐标y>0;x轴下方的点,纵坐标y0.4、关于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。关于原点对称的点,纵、横坐标都互为相反数。

关于第一、三象限角平分线对称的点,横纵坐标交换位置;关于第二、四象限角平分线上对称的点,不但横纵坐标交换位置,而且还要变成相反数。5、第一、三象限角平分线上的点,横纵坐标相等;第二、四象限角平分线上的点,横纵坐标互为相反数。

6、在一个变化过程中,存在两个变量x、y,对于x的每一个取值,y都有唯一的一个值与之对应,我们就说y是x的函数。x是自变量,y是因变量。

函数的表示方法有:解析式法、图象法、列表法。7、函数自变量的取值范围:①函数的解析式是整式时,自变量可取全体实数;②函数的解析式是分式时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.④函数的解析式是负整指数和零指数时,底数≠0;⑤对于反映实际问题的函数关系,应使实际问题有意义. 8、如果y=kx + b ( k、b是常数,k≠0),那么,y叫x的一次函数。

如果y=kx (k是常数,k 0),那么,y叫x的正比例函数。9、点在函数的图象上的代数意义是:这一点的坐标满足函数的解析式。

两个函数有交点的代数意义是:两个函数的解析式组成的方程组的解就是交点的坐标。10、一次函数y=kx+b的性质: (1)一次函数图象是过 两点的一条直线,|k|的值越大,图象越靠近于y轴。

(2)当k>0时,图象过一、三象限,y随x的增大而增大;从左至右图象是上升的(左低右高);(3)当k<0时,图象过二、四象限,y随x的增大而减小。从左至右图象是下降的(左高右低);(4)当b>0时,与y轴的交点(0,b)在正半轴;当b<0时,与y轴的交点(0,b)在负半轴。

当b=0时,一次函数就是正比例函数,图象是过原点的一条直线(5)几条直线互相平行时 ,k值相等而b不相等。11、如果y=kx ( k是常数,k≠0),那么,y叫x的反比例函数。

12、反比例函数y=kx的性质:(1)反比例函数的图象是双曲线,图象无限的靠近于x、y轴。(2)当k>0时,图象的两个分支位于一、三象限,在每个象限内,y随x的增大而减小,从左至右图象是下降的(左低右高);(3)当k<0时,图象的两个分支位于二、四象限,在每个象限内,y随x的增大而增大,从左至右图象是上升的(左高右低)。

(4)反比例函数y=kx与正比例函数y=k x的交点关于原点对称。三. 全等三角形1、判断正确或错误的句子叫做命题.正确的命题称为真命题,错误的命题称为假命题.2、命题是由题设、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项.常可写成“如果……,那么……”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.3、直角三角形的两个锐角互余.4、三角形全等的判定: 方法1:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.简记为S.A.S.(或边角边).方法2:如果两个三角形有两个角及其夹边分别对应相等,那么这两个三角形全等.简记为A.S.A.(或角边角)方法3:如果两个三角形有两个角和其中一个角的对边分别对应相等,那么这两个三角形全等.简记为A.A.S.(或角角边).方法4:如果两个三角形的三条边分别对应相等,那么这两个三角形全等.简记为S.S.S(或边边边).方法5(只能用于直角三角形):如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等.简记为H.L.(或斜边、直角边).5、一般来说,在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题。

10.八年级下册数学知识点总结

第十六章 分式 1. 分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子BA叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 (0≠C) 3.分式的通分和约分:关键先是分解因式 4.分式的运算: 分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方法则: 分式乘方要把分子、分母分别乘方。

±±±=±=±= 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减 混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。 5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=aa;当n为正整数时,nnaa1=− ()0≠a 6.正整数指数幂运算性质正整数指数幂运算性质正整数指数幂运算性质正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数) (1)同底数的幂的乘法:nmnmaaa+=⋅; (2)幂的乘方:mnnmaa=)(; (3)积的乘方:nnnbaab=)(; (4)同底数的幂的除法:nmnmaaa−=÷( a≠0); (5)商的乘方:nnnbaba=)(();(b≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。 解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤 : (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根. 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答. 应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度*时间而行程问题中又分相遇问题、追及问题. (2)数字问题 在数字问题中要掌握十进制数的表示法. (3)工程问题 基本公式:工作量=工时*工效. (4)顺水逆水问题 v顺水=v静水+v水. v逆水=v静水-v水. 8.科学记数法:把一个数表示成na10*的形式(其中101<≤a,n是整数)的记数方法叫做科学记数法. 用科学记数法表示绝对值大于10的n位整数时,其中10的指数是1−n 用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0) 第十七章 反比例函数 1.定义:形如y=xk(k为常数,k≠0)的函数称为反比例函数。其他形式xy=k 1−=kxyxky1= 2.图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。

对称中心是:原点3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k。

初中二年级下册数学知识点

标签: 知识点下册