小六数学上册知识点
1.小学六年级上册数学知识归纳(人教版)
建议你去网上搜一下,这几个网址里都有 给你一个样本: 人教版六年级数学上册知识点整理归纳 六年级上册数学知识点 第一单元 位置 1、什么是数对? ——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。 作用:确定一个点的位置。
经度和纬度就是这个原理。 例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点) ( 列 , 行 ) ↓ ↓ 竖排叫列 横排叫行 (从左往右看)(从下往上看) (从前往后看) 2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。 第二单元 分数乘法 (一)分数乘法意义: 1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。 例如: *7表示: 求7个 的和是多少? 或表示: 的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以) 例如: * 表示: 求 的 是多少? 9 * 表示: 求9的 是多少? A * 表示: 求a的 是多少? (二)分数乘法计算法则: 1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分) (2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数) 2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。 (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数) (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。 (三)积与因数的关系: 一个数(0除外)乘大于1的数,积大于这个数。
a*b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。a*b=c,当b 1时,ca (a≠0 b≠0) ③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a 三、分数除法混合运算 1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序: ①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。 注:(a±b)÷c=a÷c±b÷c 四、比:两个数相除也叫两个数的比 1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比5 2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。 例:12∶20= =12÷20= =0.6 12∶20读作:12比20 注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。 3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
3、化简比:化简之后结果还是一个比,不是一个数。 (1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。 4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
5、比和除法、分数的区别: 除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算 分数 分子 分数线(——) 分母(不能为0) 分数的基本性质 分数是一个数 比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系 附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。 分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用 1、已知单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙* (15* =9) 2、未知单位“1”的量用除法。
例: 甲是乙。
2.六年级上册所有数学公式
长 S面积 a边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2 、正方体 V:体积 a:棱长 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3 、长方形 C周长 S面积 a边长 周长=(长 宽)*2 C=2(a b) 面积=长*宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长*宽 长*高 宽*高)*2 S=2(ab ah bh) (2)体积=长*宽*高 V=abh 5 三角形 s面积 a底 h高 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6 平行四边形 s面积 a底 h高 面积=底*高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底 下底)*高÷2 s=(a b)* h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径*∏=2*∏*半径 C=∏d=2∏r (2)面积=半径*半径*∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积 底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积*高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比 折扣=实际售价÷原售价*100%(折扣。
3.求小学六年级数学人教版重点知识
每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4 单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5 工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数*因数=积 积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1 正方形 C周长 S面积 a边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2 正方体 V:体积 a:底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 10 圆锥体 v:棱长 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3 长方形 C周长 S面积 a边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4 长方体 V: 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么.com/s:体积 h:高 s;底面积 r:底面半径 c: 。
4.求六年级上册数学重点,要详细
六年级上册数学知识重点 一、位置: 1竖排叫做列,横排叫做行; 2列一般是从左往右数,行一般是从前往后数。
3用数据表示:用括号把列数与行数括起来,并在列数和行数之间写个逗号,把两个数隔开。例如:列数为2 行数为3,则写成(2,3) 二、分数乘法: 1分数乘整数 分数乘整数用分子和整数相乘的积作为分子,分母不变。
(能约分的可以先约分再乘) 2分数乘分数 分数乘分数,应该分子乘分子,分母乘分母。(能约分的可以先约分再乘) 3解决问题 等于单位一:“1”*几分之几 比单位一多:“1”*(1+几分之几) 比单位一少:“1” *(1-几分之几) 分数混和运算的顺序和证书的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也适用。 4倒数 乘积是1的两个数互为倒数,分子和分母互换位置。
1的倒数是1,0没有倒数。 三、分数除法1分数除法与整数除法的意义相同,都是两个因数的积预期中的一个因数,求另一个因数的计算。
2除以一个不等于0的数,等于乘这个数的倒数。 3解决问题使用÷或者用方程来计算 (单位一已知用乘法,单位一未知用除法或者方程) 四、比的应用 两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数或整数表示。比的前项和后项同时乘或除以相同的数吗(0除外),比值不变,这叫做比的基本性质,根据比的基本性质,可以把比化成最简单的整数比。
五、圆 1这些折痕相交于圆中心的一点,这一点叫做圆心,一般用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。
通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。 2我们以前学过对称图形和对称轴,长方形 正方形河源等都是对称图形,都有对称轴。
这些图形都是轴对称图形。 3公式: C=πd 圆的周长=3.14*直径 S=πr² 圆的面积=3.14*半径*半径 C=(d大+d小)*π 圆环的周长=(外环直径+内环直径)*3.14 S=(d大²-d小²)*π 圆环的面积=(外环直径²-内环直径²)*3.14 六、百分数 1百分数表示一个数是另一个数的百分之几。
百分数也叫做百分率或百分比。(百分数表示两个数的关系)百分数通常不写成分数形式,而在原来的分子后面叫上%来表示。
2百分数的互化(略) 3解决问题 比单位一多 比单位一少 等于单位一 3折扣 商店有时降价出售商品,叫做打折扣销售,通称打折。几折就表示十分之几,也就是百分之几十。
4纳税 纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。税收是国家收入的主要来源之一。
国家用手来的税款发展经济 科技 教育 文化和国防等事业。我国的每个公民都有依法纳税的义务。
税收主要分为消费税,增值税,营业税和个人所得税等几类。缴纳的税款叫做应纳税额,应纳税额于各种收入(销售额 营业额……)的比率叫做税率。
税率=应纳税收入分之应纳税额。 5利率 人们常常把暂时不用的钱存入银行储蓄起来。
储蓄不仅可以支援国家建设,也是的个人钱财更安全和有计划,还可以增加一些收入。在银行存款的方式有多种,如活期 整存整取 零存整取等。
存入银行的钱叫做本金;取款时银行多支付的钱叫做利息;利息与本金的比值叫做利率。利息=本金*利率*时间(国家规定,存款的利息要按率纳税。
教育储蓄存款和国税不要纳税)5%的利 合理存款 教育储蓄一年期 三年期按同期整存争取定期储蓄存款利率计算;六年期按五年期整存整取定期储蓄存款利率计算。 七、统计 如果要更清楚的了解各部分数量同总数之间的关系,可以用扇形统计图表示。
八、数学广角 可以用假设法或方程来解答。 假设法:(8个头,26只脚)4*8=32 32-26=6 6÷2=3 解方程:(设脚多的动物为x)略。
5.求六年级上册数学重点,要详细
六年级上册数学知识重点 一、位置: 1竖排叫做列,横排叫做行; 2列一般是从左往右数,行一般是从前往后数。
3用数据表示:用括号把列数与行数括起来,并在列数和行数之间写个逗号,把两个数隔开。例如:列数为2 行数为3,则写成(2,3) 二、分数乘法: 1分数乘整数 分数乘整数用分子和整数相乘的积作为分子,分母不变。
(能约分的可以先约分再乘) 2分数乘分数 分数乘分数,应该分子乘分子,分母乘分母。(能约分的可以先约分再乘) 3解决问题 等于单位一:“1”*几分之几 比单位一多:“1”*(1+几分之几) 比单位一少:“1” *(1-几分之几) 分数混和运算的顺序和证书的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也适用。 4倒数 乘积是1的两个数互为倒数,分子和分母互换位置。
1的倒数是1,0没有倒数。 三、分数除法1分数除法与整数除法的意义相同,都是两个因数的积预期中的一个因数,求另一个因数的计算。
2除以一个不等于0的数,等于乘这个数的倒数。 3解决问题使用÷或者用方程来计算 (单位一已知用乘法,单位一未知用除法或者方程) 四、比的应用 两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数或整数表示。比的前项和后项同时乘或除以相同的数吗(0除外),比值不变,这叫做比的基本性质,根据比的基本性质,可以把比化成最简单的整数比。
五、圆 1这些折痕相交于圆中心的一点,这一点叫做圆心,一般用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。
通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。 2我们以前学过对称图形和对称轴,长方形 正方形河源等都是对称图形,都有对称轴。
这些图形都是轴对称图形。 3公式: C=πd 圆的周长=3.14*直径 S=πr² 圆的面积=3.14*半径*半径 C=(d大+d小)*π 圆环的周长=(外环直径+内环直径)*3.14 S=(d大²-d小²)*π 圆环的面积=(外环直径²-内环直径²)*3.14 六、百分数 1百分数表示一个数是另一个数的百分之几。
百分数也叫做百分率或百分比。(百分数表示两个数的关系)百分数通常不写成分数形式,而在原来的分子后面叫上%来表示。
2百分数的互化(略) 3解决问题 比单位一多 比单位一少 等于单位一 3折扣 商店有时降价出售商品,叫做打折扣销售,通称打折。几折就表示十分之几,也就是百分之几十。
4纳税 纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。税收是国家收入的主要来源之一。
国家用手来的税款发展经济 科技 教育 文化和国防等事业。我国的每个公民都有依法纳税的义务。
税收主要分为消费税,增值税,营业税和个人所得税等几类。缴纳的税款叫做应纳税额,应纳税额于各种收入(销售额 营业额……)的比率叫做税率。
税率=应纳税收入分之应纳税额。 5利率 人们常常把暂时不用的钱存入银行储蓄起来。
储蓄不仅可以支援国家建设,也是的个人钱财更安全和有计划,还可以增加一些收入。在银行存款的方式有多种,如活期 整存整取 零存整取等。
存入银行的钱叫做本金;取款时银行多支付的钱叫做利息;利息与本金的比值叫做利率。利息=本金*利率*时间(国家规定,存款的利息要按率纳税。
教育储蓄存款和国税不要纳税)5%的利 合理存款 教育储蓄一年期 三年期按同期整存争取定期储蓄存款利率计算;六年期按五年期整存整取定期储蓄存款利率计算。 七、统计 如果要更清楚的了解各部分数量同总数之间的关系,可以用扇形统计图表示。
八、数学广角 可以用假设法或方程来解答。 假设法:(8个头,26只脚)4*8=32 32-26=6 6÷2=3 解方程:(设脚多的动物为x)略。
6.小学六年级的数学知识点~~急求
小学六年级数学知识点总结小学六年级数学知识点总结小学六年级数学知识点总结小学六年级数学知识点总结 1. 每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4 、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7 、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式小学数学图形计算公式小学数学图形计算公式小学数学图形计算公式 1 正方形正方形正方形正方形 C周长 S面积 a边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2 正方体正方体正方体正方体 V:体积 a:棱长 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3 长方形长方形长方形长方形 C周长 S面积 a边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4 长方体长方体长方体长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5 三角形三角形三角形三角形 s面积 a底 h高 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6 平行四边形平行四边形平行四边形平行四边形 s面积 a底 h高 面积=底*高 s=ah 7 梯形梯形梯形梯形 s面积 a上底 b下底 h高 面积=(上底+下底)*高÷2 s=(a+b)* h÷2 8 圆形圆形圆形圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径*∏=2*∏*半径 C=∏d=2∏r (2)面积=半径*半径*∏ S=∏rr 9 圆柱体圆柱体圆柱体圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 10 圆锥体圆锥体圆锥体圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积*高÷3 总数÷总份数=平均数 和差问题的公式和差问题的公式和差问题的公式和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题和倍问题和倍问题和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题差倍问题差倍问题差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数)小学奥数公式 和差问题的公式和差问题的公式和差问题的公式和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题的公式和倍问题的公式和倍问题的公式和倍问题的公式 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题的公式差倍问题的公式差倍问题的公式差倍问题的公式 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 植树问题的公式植树问题的公式植树问题的公式植树问题的公式 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 盈亏问题的公式盈亏问题的公式盈亏问题的公式盈亏问题的公式 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题的公式相遇问题的公式相遇问题的公式相遇问题的公式 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题的公式追及问题的公式追及问题的公式追及问题的公式 追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题流水问题流水问题流水问题 顺流速度=静水速度+水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题的公式浓度问题的公式浓度问题的公式浓度问题的公式 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷浓度=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 利润与折扣问题的公式利润与折扣问题的公式利润与折扣问题的公式利润与折扣问题的公式 利润=售出价-成本 涨跌金额=本金*涨跌百分比 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 折扣=实际售价÷原售价*100%(折扣。
7.6年级上册数学的重点
体积和表面积 三角形的面积=底*高÷2。
公式 S= a*h÷2 正方形的面积=边长*边长 公式 S= a2 长方形的面积=长*宽 公式 S= a*b 平行四边形的面积=底*高 公式 S= a*h 梯形的面积=(上底+下底)*高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的表面积=(长*宽+长*高+宽*高 ) *2 公式:S=(a*b+a*c+b*c)*2 正方体的表面积=棱长*棱长*6 公式: S=6a2 长方体的体积=长*宽*高 公式:V = abh 长方体(或正方体)的体积=底面积*高 公式:V = abh 正方体的体积=棱长*棱长*棱长 公式:V = a3 圆的周长=直径*π 公式:L=πd=2πr 圆的面积=半径*半径*π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh 圆锥的体积=1/3底面*积高。公式:V=1/3Sh 算术 1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a 3、乘法交换律:a * b = b * a 4、乘法结合律:a * b * c = a *(b * c) 5、乘法分配律:a * b + a * c = a * b + c 6、除法的性质:a ÷ b ÷ c = a ÷(b * c) 7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 8、有余数的除法: 被除数=商*除数+余数 方程、代数与等式 等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。 代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x =ab+c 分数 分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。
1的倒数是1,0没有倒数。 分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小 分数的除法则:除以一个数(0除外),等于乘这个数的倒数。 真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。 分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
数量关系计算公式 单价*数量=总价 2、单产量*数量=总产量 速度*时间=路程 4、工效*时间=工作总量 加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数*因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商*除数 长度单位: 1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 面积单位: 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1亩=666.666平方米。 体积单位 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1升=1立方分米=1000毫升 1毫升=1立方厘米 重量单位 1吨=1000千克 1千克= 1000克= 1公斤= 1市斤 比 什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。 什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:18 比例的基本性质:在比例里,两外项之积等于两内项之积。 解比例:求比例中的未知项,叫做解比例。
如3:χ=9:18 正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y 反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x*y = k( k一定)或k / x = y 百分数 百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分。
8.小学六年级数学上册复习资料
数 学 十 一 册 知 识 点 分数乘法 意义:求一个数的几分之几是多少?例如*表示求的是多少?计算方法:分子乘分子作分子,分母乘分母作分母,结果要化成最简分数。
倒数:乘积是1的两个数互为倒数。1的倒数是1,0没有倒数。
分数除法 意义:①已知两个因数的积,及其中一个因数,求另一个因数的运算。例如÷表示已知两个因数的积是,其中一个因数是,求另一个因数是多少? ②已知一个数的几分之几是多少,求这个数?例如÷表示已知一个数的是,求这个数是多少?计算方法:一个数除以分数(整数)等于乘这个分数的(整数)的倒数。
比 意义:两个数相除又叫做两个数的比。例如2÷3=2:3= 比值:比的前项除以后项所得的商叫做比值。
比值可以用分数表示也可以用小数或整数表示 比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。圆 圆心o:决定圆的位置。
半径r:决定圆的大小。连接圆心和圆上任意一点的线段叫做半径。
r= 直径d:通过圆心并且两端都在圆上的线段叫做直径。d=2r 圆周率∏:任意一个圆的周长与直径的比值叫做圆周率。
∏是一个无限不循环小数,一般取值∏=3.14 圆的周长(C)公式:C=∏d或C=2∏r 圆的面积(S)公式:S=∏ 圆环的面积公式:=∏(-) 百分数 意义:百分数表示一个数是另一个数的百分之几。百分数也叫做百分率或百分比。
百分数只表示两个数的关系,它不是一个具体的数,所以它的后面不能写单位名称。另外百分数的分子还可以是小数。
折扣:商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就表示十分之几,也就是百分之几十。
例如八折==80﹪,六折五=0.65=65﹪ 纳税:缴纳的税款叫做应纳税额。应纳税额与各种收入的比率叫做税率。
利率:存入银行的钱叫做本金。取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。利息的计算公式:利息=本金*利率*时间 统计 常用统计图:条形统计图、折线统计图、扇形统计图。
条形统计图:可以清楚的看出各种数量的多少。折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化。
扇形统计图:可以清楚的看出各部分数量同总数之间的关系。分数、百分数应用题的一般解题步骤:1.审题,理解题意,判断找出谁是单位“1”;2.初步判定:若单位“1”已知,则本题用乘法计算;若单位“1”未知,则本题用除法计算;3.找出或求出已知量或所求量所对应的分率(分数或百分数)。
已知量是指:题目中已经出现的,后面加单位的数量。 未知量是指:题目中的问题所要求出来的数量。
参考公式如下:单位“1”(已知量)*所求量对应的分率=所求量 已知量÷已知量所对应的分率=单位“1”(所求量) 熟记常用知识点 分数与小数互化常数=0.5=50﹪ =0.25=25﹪ =0.75=75﹪ =0.2=20﹪ =0.4=40﹪ =0.6=60﹪=0.8=80﹪ =0.125=12.5﹪ =0.375=37.5﹪ =0.625=62.5﹪ =0.875=87.5﹪=0.1=10﹪ =0.3=30﹪ =0.7=70﹪ =0.9=90﹪ =0.05=5﹪ =0.15=15﹪ =0.35=35﹪ =0.45=45﹪ =0.55=55﹪ =0.65=65﹪ =0.85=85﹪ =0.95=95﹪ =0.04=4﹪ =0.08=8﹪ =0.12=12﹪ =0.16=16﹪ =0.0625=6.25﹪ ∏取值∏=3.14时常用计算结果1∏=3.14 2∏=6.28 3∏=9.42 4∏=12.56 5∏=15.7 6∏=18.84 7∏=21.98 8∏=25.12 9∏=28.26 16∏=50.24 25∏=78.5 36∏=113.04 常用平方数结果=121 =144 =169 =196 =225 =256 =289 =324 =361 乘法运算定律 乘法交换律:a*b=b*d 乘法结合律:a*b*c=a*(b*c) 乘法分配律:a*(b+c)=ab+ac或a*(b-c)=ab-ac。
9.小学六年级数学上册复习资料
数 学 十 一 册 知 识 点分数乘法意义:求一个数的几分之几是多少?例如*表示求的是多少?计算方法:分子乘分子作分子,分母乘分母作分母,结果要化成最简分数。
倒数:乘积是1的两个数互为倒数。1的倒数是1,0没有倒数。
分数除法意义:①已知两个因数的积,及其中一个因数,求另一个因数的运算。例如÷表示已知两个因数的积是,其中一个因数是,求另一个因数是多少? ②已知一个数的几分之几是多少,求这个数?例如÷表示已知一个数的是,求这个数是多少?计算方法:一个数除以分数(整数)等于乘这个分数的(整数)的倒数。
比意义:两个数相除又叫做两个数的比。例如2÷3=2:3=比值:比的前项除以后项所得的商叫做比值。
比值可以用分数表示也可以用小数或整数表示比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。圆圆心o:决定圆的位置。
半径r:决定圆的大小。连接圆心和圆上任意一点的线段叫做半径。
r=直径d:通过圆心并且两端都在圆上的线段叫做直径。d=2r圆周率∏:任意一个圆的周长与直径的比值叫做圆周率。
∏是一个无限不循环小数,一般取值∏=3.14圆的周长(C)公式:C=∏d或C=2∏r圆的面积(S)公式:S=∏圆环的面积公式:=∏(-)百分数意义:百分数表示一个数是另一个数的百分之几。百分数也叫做百分率或百分比。
百分数只表示两个数的关系,它不是一个具体的数,所以它的后面不能写单位名称。另外百分数的分子还可以是小数。
折扣:商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就表示十分之几,也就是百分之几十。
例如八折==80﹪,六折五=0.65=65﹪纳税:缴纳的税款叫做应纳税额。应纳税额与各种收入的比率叫做税率。
利率:存入银行的钱叫做本金。取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。利息的计算公式:利息=本金*利率*时间统计常用统计图:条形统计图、折线统计图、扇形统计图。
条形统计图:可以清楚的看出各种数量的多少。折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化。
扇形统计图:可以清楚的看出各部分数量同总数之间的关系。分数、百分数应用题的一般解题步骤:1.审题,理解题意,判断找出谁是单位“1”;2.初步判定:若单位“1”已知,则本题用乘法计算;若单位“1”未知,则本题用除法计算;3.找出或求出已知量或所求量所对应的分率(分数或百分数)。
已知量是指:题目中已经出现的,后面加单位的数量。 未知量是指:题目中的问题所要求出来的数量。
参考公式如下:单位“1”(已知量)*所求量对应的分率=所求量 已知量÷已知量所对应的分率=单位“1”(所求量)熟记常用知识点分数与小数互化常数=0.5=50﹪ =0.25=25﹪ =0.75=75﹪ =0.2=20﹪ =0.4=40﹪ =0.6=60﹪=0.8=80﹪ =0.125=12.5﹪ =0.375=37.5﹪ =0.625=62.5﹪ =0.875=87.5﹪=0.1=10﹪ =0.3=30﹪ =0.7=70﹪ =0.9=90﹪ =0.05=5﹪ =0.15=15﹪ =0.35=35﹪ =0.45=45﹪ =0.55=55﹪ =0.65=65﹪ =0.85=85﹪ =0.95=95﹪ =0.04=4﹪ =0.08=8﹪ =0.12=12﹪ =0.16=16﹪ =0.0625=6.25﹪∏取值∏=3.14时常用计算结果1∏=3.14 2∏=6.28 3∏=9.42 4∏=12.56 5∏=15.7 6∏=18.84 7∏=21.98 8∏=25.12 9∏=28.26 16∏=50.24 25∏=78.5 36∏=113.04常用平方数结果=121 =144 =169 =196 =225 =256 =289 =324 =361乘法运算定律乘法交换律:a*b=b*d 乘法结合律:a*b*c=a*(b*c)乘法分配律:a*(b+c)=ab+ac或a*(b-c)=ab-ac。
10.小学的数学知识点总结归纳
1、数与代数:数的认识、数的运算、式与方程、比和比例。
2、空间与图形:线与角、平面图形、立体图形、图形与变换、图形与位置。3、统计与可能性:量的计量、统计、可能性。
4、实践与综合应用:探索规律、一般复合应用问题、典型应用问题、分数和百分数应用问题、比和比例问题、解决问题的策略、综合应用问题。扩展资料:整数1、整数的意义:…像-4,-3,-2,-1,0,1,2,3,…这样的数叫整数。
2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3,4……叫做自然数。一个物体也没有,用0表示,0也是自然数。
3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。4、数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的约数。
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 解比例的依据是比例的基本性质。
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x*y=k(k一定)或k/x=y 百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化法。16、最大公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数:公因数只有1的两个数,叫做互质数。18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公因数)21、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整,即能用2进行 约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。
在约分时应注意利用。22、偶数和奇数:能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金*利率*时间(时间一般以年或月为单位,应与利率的单位相对应)29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。30、自然数:用来表示物体个数的整数,叫做自然数。
0也是自然数。31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
32、一天的时间:一天有24小时,一小时60分,1分60秒 参考资料来源:百度百科-小学数学知识 参考资料来源:百度百科-小学数学。