三角形上的数学知识

bdqnwqk1年前学者9

1.关于三角形的知识点总结

原发布者:鑫淼图文

4、三角形的主要线段的定义: (1)三角形的中线:三角形中,连结一个顶点和它对边中点的线段. 如图:(1)AD是△ABC的BC上的中线.(2)BD=DC=BC. 注意:①三角形的中线是线段; ②三角形三条中线全在三角形的内部且交于三角形内部一点 (重心)③中线把三角形分成两个面积相等的三角形. (2)三角形的角平分线 :三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 ③由于三角形有三条高线,所以求三角形的面积的时候就有三种(因为高底不一样) 10、多边形 :在同一平面内,由一些线段首尾顺次相接组成的图形叫多边

2.初三数学三角形知识点总结归纳,要把初三所有关于三角形的知识点

三角形的定义三角形是多边形中边数最少的一种.它的定义是:由不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形.三条线段不在同一条直线上的条件,如果三条线段在同一条直线上,我们认为三角形就不存在.另外三条线段必须首尾顺次相接,这说明三角形这个图形一定是封闭的.三角形中有三条边,三个角,三个顶点. 三角形中的主要线段三角形中的主要线段有:三角形的角平分线、中线和高线.这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握.并且对这三条线段必须明确三点:(1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线.(2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部.而三角形的高线在当△ABC是锐角三角形时,三条高都是在三角形内部,钝角三角形的高线中有两个垂足落在边的延长线上,这两条高在三角形的外部,直角三角形中有两条高恰好是它的两条直角边.(3)在画三角形的三条角平分线、中线、高时可发现它们都交于一点.在以后我们可以给出具体证明.今后我们把三角形三条角平分线的交点叫做三角形的内心,三条中线的交点叫做三角形的重心,三条高的交点叫做三角形的垂心.三角形的按边分类三角形的三条边,有的各不相等,有的有两条边相等,有的三条边都相等.所以三角形按边的相等关系分类如下:等边三角形是等腰三角形的一种特例.判定三条边能否构成三角形的依据△ABC的三边长分别是a、b、c,根据公理“连接两点的所有线中,线段最短”.可知:③a+b>c,①a+c>b,②b+c>a定理:三角形任意两边的和大于第三边.由②、③得 b―a―c故|a―b|-a.也就是a+c>b且a+b>c,再加上b+c>a,便满足任意两边之和大于第三边的条件.反过来,只要a、b、c三条线段满足能构成三角形的条件,则一定有|b-c|a就可判定a、b、c三条线段能够构成三角形.同时如果已知线段a最小,只要满足|b-c。

3.初三数学三角形知识点总结归纳 急啊~~~~~

三角形的定义三角形是多边形中边数最少的一种。

它的定义是:由不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。三条线段不在同一条直线上的条件,如果三条线段在同一条直线上,我们认为三角形就不存在。

另外三条线段必须首尾顺次相接,这说明三角形这个图形一定是封闭的。三角形中有三条边,三个角,三个顶点。

三角形中的主要线段三角形中的主要线段有:三角形的角平分线、中线和高线。这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握。

并且对这三条线段必须明确三点:(1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线。(2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部。

而三角形的高线在当△ABC是锐角三角形时,三条高都是在三角形内部,钝角三角形的高线中有两个垂足落在边的延长线上,这两条高在三角形的外部,直角三角形中有两条高恰好是它的两条直角边。(3)在画三角形的三条角平分线、中线、高时可发现它们都交于一点。

在以后我们可以给出具体证明。今后我们把三角形三条角平分线的交点叫做三角形的内心,三条中线的交点叫做三角形的重心,三条高的交点叫做三角形的垂心。

三角形的按边分类三角形的三条边,有的各不相等,有的有两条边相等,有的三条边都相等。所以三角形按边的相等关系分类如下:等边三角形是等腰三角形的一种特例。

判定三条边能否构成三角形的依据△ABC的三边长分别是a、b、c,根据公理“连接两点的所有线中,线段最短”。可知:③a+b>c,①a+c>b,②b+c>a定理:三角形任意两边的和大于第三边。

由②、③得 b―a―c故|a―b|从而得到推论:三角形任意两边的差小于第三边。 上述定理和推论实际上是一个问题的两种叙述方法,定理包含了推论,推论也可以代替定理。

另外,定理和推论是判定三条线段能否构成三角形的依据。如:三条线段的长分别是5、4、3便能构成三角形,而三条线段的长度分别是5、3、1,就不能构成三角形。

判定三条边能否构成三角形对于某一条边来说,如一边a,只要满足|b-c|-a.也就是a+c>b且a+b>c,再加上b+c>a,便满足任意两边之和大于第三边的条件。反过来,只要a、b、c三条线段满足能构成三角形的条件,则一定有|b-c|在特殊情况下,如果已知线段a最大,只要满足b+c>a就可判定a、b、c三条线段能够构成三角形。

同时如果已知线段a最小,只要满足|b-c|证明三角形的内角和定理除了课本上给出的证明方法外还有多种证法,这里再介绍两种证法的思路:方法1 如图,过顶点A作DE‖BC,运用平行线的性质,可得∠B=∠2,∠C=∠1,从而证得三角形的内角和等于平角∠DAE。方法2 如图,在△ABC的边BC上任取一点D,过D作DE‖AB,DF‖AC,分别交AC、AB于E、F,再运用平行线的性质可证得△ABC的内角和等于平角∠BDC。

三角形按角分类根据三角形的内角和定理可知,三角形的任一个内角都小于180°,其内角可能都是锐角,也可能有一个直角或一个钝角。三角形按角可分类如下:根据三角形的内角和定理可有如下推论:推论1 直角三角形的两个锐角互余。

推论2 三角形的一个外角等于和它不相邻的两个内角的和。推论3 三角形的一个外角大于任何一个和它不相邻的内角。

同时我们还很容易得到如下几条结论:(1)一个三角形最多有一个直角或钝角。(2)一个三角形至少有两个内角是锐角。

(3)一个三角形至少有一个角等于或小于60°(否则,若三个内角都大于60°;则这个三角形的内角和大于180°,这与定理矛盾)。(4) 三角形有六个外角,其中两两是对顶角相等,所以三角形的三个外角和等于360°。

全等三角形的性质全等三角形的两个基本性质(1)全等三角形的对应边相等。(2)全等三角形的对应角相等。

确定两个全等三角形的对应边和对应角怎样根据已知条件准确迅速地找出两个全等三角形的对应边和对应角?其方法主要可归结为:(1)若两个角相等,这两个角就是对应角,对应角的对边是对应边。(2)若两条边相等,这两条边就是对应边,对应边的对角是对应角。

(3)两个对应角所夹的边是对应边。(4)两个对应边所夹的角是对应角。

由全等三角形的定义判定三角形全等由全等三角形的定义知,要判定两个三角形全等,需要知道三条边,三个角对应相等,但在应用中,利用定义判定两个三角形全等却是十分麻烦的,因而需要找到能完全确定一个三角形的条件,以便用较少的条件,简便的方法来判定两个三角形的全等。判定两个三角形全等的边、角、边公理内容:有两边和它们的夹角对应相等的两个三角形全等(即SAS)。

这个判定方法是以公理形式给出的,我们可以通过实践操作去验证它,但验证不等于证明,这点要区分开来。公理中的题设条件是三个元素:边、角、边,意指两条边和这两条边所夹的角对应相等。

不能理解成两边和其中一个角相等。否则,这两个三角形就不一定全等。

例如 在△ABC和△A′B′C′中,如右图,AB=A′B′,∠A=∠A′,BC=A′C′,但是△ABC不全等于△A′B′C′。又如,右图,在△ABC和△A′B′。

4.简单说一下有关三角形的数学知识

什么是三角形? 由三条边首尾相接组成的内角和为180°的封闭图形叫做三角形 例题:已知有一△ABC,求证∠ABC+∠BAC+∠BCA=180° 证明:做BC的延长线至点D,过点C作AB的平行线至点E ∵AB‖CE(已知) ∴∠ABC=∠ECD(两直线平行,同位角相等),∠BAC=∠ACE(两直线平行,内错角相等) ∵∠BCD=180° ∴∠ACB+∠ACE+∠ECD=∠BCD=180°(等式的性质) ∴∠ABC+∠BAC+∠BCA=180°(等量代换) 三角形是几何图案的基本图形,几边形都是由三角形组成的。

两直线平行,同旁内角互补。 三角形的内角和 三角形的内角和为180度;三角形的一个外角等于另外两个内角的和;三角形的一个外角大于其他两内角的任一个角。

证明:根据三角形的外角和等于内角可以证明,详细参见《优因培:走进三角形》 (1)如何证明三角形的内角和 方法1:将三角形的三个角撕下来拼在一起,求出内角和为180° 方法2:在三角形任意一个顶点处做辅助线,可求出内角和为180°编辑本段三角形分类 (1)按角度分 a.锐角三角形:三个角都小于90度 。并不是有一个锐角的三角形,而是三个角都为锐角,比如等边三角形也是锐角三角形。

b.直角三角形(简称Rt 三角形): ⑴直角三角形两个锐角互余; ⑵直角三角形斜边上的中线等于斜边的一半; ⑶在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半.; ⑷在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°(和⑶相反); c.钝角三角形:有一个角大于90度(锐角三角形,钝角三角形统称斜三角形)。 d.证明全等时可用HL方法 (2)按角分 a.锐角三角形:三个角都小于90度。

b.直角三角形:有一个角等于90度。 c.钝角三角形:有一个角大于90度。

(锐角三角形和钝角三角形可统称为斜三角形) (3)按边分 不等腰三角形;等腰三角形(含等边三角形)。编辑本段解直角三角形: 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。

勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,5。

他们分别是3,4和5的倍数。 常见的勾股弦数有:3,4,5;6,8,10;5,12,13;等等.编辑本段解斜三角形 在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有 (1)正弦定理 a/SinA=b/SinB= c/SinC=2r (外接圆半径为r) (2)余弦定理。

a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC (3)余弦定理变形公式 cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab编辑本段三角形的性质 1.三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。 2.三角形内角和等于180度 3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。

4.直角三角形的两条直角边的平方和等于斜边的平方--勾股定理。直角三角形斜边的中线等于斜边的一半。

5.三角形的外角(三角形内角的一边与其另一边的延长线所组成的角)等于与其不相邻的两个内角之和。 6.一个三角形最少有2个锐角。

7.三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。 8.等腰三角形中,等腰三角形顶角的平分线平分底边并垂直于底边。

9.勾股定理逆定理:如果三角形的三边长a,b,c有下面关系(a^2+b^2=c^2。) 那么这个三角形就一定是直角三角形。

10.三角形的外角和是360°。 11.等底等高的三角形面积相等。

12.底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。 13.三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。

14.在△ABC中恒满足tanAtanBtanC=tanA+tanB+tanC。 15.三角形的一个外角大于任何一个与它不相邻的内角。

16.全等三角形对应边相等,对应角相等。 17.三角形的中心在三条中线的交点上。

18在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。编辑本段三角形的五心、四圆、三点、一线 三角形的五心四圆三点一线这些是三角形的全部特殊点,以及基于这些特殊点的相关几何图形。

“五心”指重心(barycenter)、垂心、内心(incenter)、外心(circumcenter)和旁心;“四圆”为内切圆、外接圆、旁切圆和欧拉圆;“三点”是勒莫恩点、奈格尔点和欧拉点;“一线”即欧拉线。 以下记三角形的三个顶点为A、B、C,相应的对边边长为a、b、c,系数K(a) = -a^2+b^2+c^2,K(b)、K(c)类推。

三线坐标各分量直接乘以相应边长即可转换为面积坐标,以某点的面积坐标结合三顶点坐标计算该点平面直角坐标的方法:记某点面积坐标为(μa, μb, μc),三分量之和为μ,则有Px = (μa·Xa + μb·Xb + μc·Xc) / μ,Py类推。 五心 名称 定义 三线坐标 (内心坐标) 面积坐标 (重心坐标) 重心 三条中线(顶点到对边中点连线)的交点 1/a : 1/b : 1/c 1 : 1 : 1 垂心 三条高(顶点到对边的垂线)的交点 sec A : sec B : sec C 1/K(a) : 1/K(b) : 1/K(c) 或 tan(A) : tan(B) : tan(C) 内心 三条内角平分线的交点 1 : 1 : 1 a : b : c 外。

5.求初一数学三角形这章的知识点归纳

初中数学定理公式归纳 1 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 2 等腰三角形的顶角平分线、底边上的中线和高互相重合 3等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 4推论 2 有一个角等于60°的等腰三角形是等边三角形 5在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 6直角三角形斜边上的中线等于斜边上的一半 7定理 线段垂直平分线上的点和这条线段两个端点的距离相等 8逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 9线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 10定理1 关于某条直线对称的两个图形是全等形 11定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 12定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 13逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 14勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 15勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形。

6.三角函数的知识点归纳

三角函数知识点公式定理记忆口诀三角函数是函数,象限符号坐标注.函数图象单位圆,周期奇偶增减现.同角关系很重要,化简证明都需要.正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除.诱导公式就是好,负化正后大化小,变成锐角好查表,化简证明少不了.二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判.两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式.和差化积须同名,互余角度变名称.计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变.逆反原则作指导,升幂降次和差积.条件等式的证明,方程思想指路明.万能公式不一般,化为有理式居先.公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

7.【25个三角形的数学常识我把作业弄丢了,12点以前..】

我来挑战一下1.内角和1802.外角和3603.其中一角的外角和等于其余俩内角和4.最大的内角大于90的,为钝角三角形5.小于90的,为锐角三角形6.等于90的,为直角三角形7.两边和大于第三边8.两边差小于第三边9.直角三角形的中线长等于斜边的一半10.直角三角形的斜边长为外接圆的直径11.等边三角形三线合一12.三点合一13.勾股定理14.内角平分线的交点为内切圆圆心15.三条边的中垂线的交点为外接圆圆心16..掰不出来了。

555。孙老师啊。

对不起你啊。反省。

三角形上的数学知识