关于系统的有关知识高中数学

bdqnwqk1年前基础7

1.高中数学:哪些难知识点是要系统学习的

高中数学主要是代数,三角,几何三个部分.内容相互独立但是解题时常互相提供方法,等高三你就知道了.

必修的:

代数部分有:

1 集合与简易逻辑.其实就是集合,命题,充要条件三点,很浅显高考也不会单出这类的题

2 函数.先是对于函数的描述,有映射定义域对应法则植域;然后是性质,三个,单调性奇偶性周期性;最后是指数函数还有对数函数,是两个基本的函数,要研究他们的性质和图象

3 三角.三角其实就是个工具,比较烦人,公式背下来再多练练用的滚瓜烂熟就行了

4 几何.也就是平面解析几何,用坐标法定量的研究平面几何问题.学几个定义,然后是直线的方程,圆的方程,圆锥曲线方程.

高考的重点一般在 常用函数 常用双曲线+直线 数列 三角

二项式定理 立体几何 排列组合加概率等其他一些知识是比较小的部分

重要的是基础 高一的话上课的基本解题方法一定要熟练掌握 并且不能忘记 到了高三再练习就很麻烦了 还有不要忽视概念 往往很多题目是考概念的

难度方面要视文理科而定 但是70%题目肯定用基本知识就能做的 20%需要结合各种知识并且动脑 真正有难度的题目只有10%

2.如何系统的学习高中数学

和初中数学相比,高中数学的内容多,抽象性、理论性强,因为不少同学进入高中之后很不适应,特别是高一年级,进校后,代数里首先遇到的是理论性很强的函数,再加上立体几何,空间概念、空间想象能力又不可能一下子就建立起来,这就使一些初中数学学得还不错的同学不能很快地适应而感到困难,以下就怎样学好高中数学谈几点意见和建议。

一、首先要改变观念。 初中阶段,特别是初中三年级,通过大量的练习,可使你的成绩有明显的提高,这是因为初中数学知识相对比较浅显,更易于掌握,通过反复练习,提高了熟练程度,即可提高成绩,既使是这样,对有些问题理解得不够深刻甚至是不理解的。

例如在初中问|a|=2时,a等于什么,在中考中错的人极少,然而进入高中后,老师问,如果|a|=2,且a又如,前几年北京四中高一年级的一个同学在高一上学期期中考试以后,曾向老师提出“抗议”说:“你们平时的作业也不多,测验也很少,我不会学”,这也正说明了改变观念的重要性。 高中数学的理论性、抽象性强,就需要在对知识的理解上下功夫,要多思考,多研究。

二、提高听课的效率是关键。 学生学习期间,在课堂的时间占了一大部分。

因此听课的效率如何,决定着学习的基本状况,提高听课效率应注意以下几个方面: 1、课前预习能提高听课的针对性。 预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。

2、听课过程中的科学。 首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于激烈的体育运动或看小书、下棋、打牌、激烈争论等。

以免上课后还喘嘘嘘,或不能平静下来。 其次就是听课要全神贯注。

全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。 耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。

眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,生动而深刻的接受老师所要表达的思想。 心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的。

口到:就是在老师的指导下,主动回答问题或参加讨论。 手到:就是在听、看、想、说的基础上划出课文的重点,记下讲课的要点以及自己的感受或有创新思维的见解。

若能做到上述“五到”,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。 3、特别注意老师讲课的开头和结尾。

老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。 4、要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。

此外还要特别注意老师讲课中的提示。 老师讲课中常常对一些重点难点会作出某些语言、语气、甚至是某种动作的提示。

最后一点就是作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。 三、做好复习和总结工作。

1、做好及时的复习。 课完课的当天,必须做好当天的复习。

复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。

2、做好单元复习。 学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。

3、做好单元小结。 单元小结内容应包括以下部分。

(1)本单元(章)的知识网络; (2)本章的基本思想与方法(应以典型例题形式将其表达出来); (3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 四、关于做练习题量的问题 有不少同学把提高数学成绩的希望寄托在大量做题上。

我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。

如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本。

3.高中数学全面系统的复习

高中数学复习指导高三即将毕业,我们高二就是高三了。

数学复习已经摆在我们面前了,下面就复习给出一点建议,供大家参考。一、基础复习阶段———系统整理,构建数学知识网络第一轮复习,也称“知识篇”,在这一阶段,老师将带领同学们重温高一、高二所学课程,但这绝不只是以前所学知识的简单重复,而是站在更高的角度,对旧知识产生全新认识的重要过程。

因为在高一、高二时,老师是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,你学的往往是零碎的、散乱的知识点,而在第一轮复习时,老师的主线索是知识的纵向联系与横向联系,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,侧重点在于各个知识点之间的融会贯通。平时复习中应重视教材中概念、定理、公式等基础知识、基本技能;同时,更应注重知识的发展形成过程,例题的分析思路,求解过程。

在复习中应立足教材、夯实基础,以课本为主,全面梳理知识、方法,注意知识结构的重组与概括。将高中阶段所学的数学知识进行系统整理,用简明的图表形式把基础知识进行有机的串联,构建成知识网络,使学生对整个高中数学体系有一个全面的认识和把握,以便于知识的存储,提取和应用,也有利于学生思维品质的培养和提高,这是数学复习的重要环节。

第一轮重点是“三基”(基础知识、基本技能、基本方法)复习,目标是全面、扎实、系统、灵活。学生极易忽视复习课本重要例习题所蕴含的数学思想方法。

如上海高考曾出现“解析几何重要思想方法为何”,江苏高考曾出现“用定义法求某函数的导数”等试题。《考试说明》明确指出:易、中、难题的占分比例控制在3:5:2左右,即中低档题占总分的80%左右,这就决定了我们在高考复习中必须抓基础,常抓不懈,只有基础打好了,做中低档题才会概念清楚,得心应手,做难题和综合题才能思路清晰,运算准确。

所以大家在复习过程中应做到:① 立足课本,迅速激活已学过的各个知识点。(建议大家在高三前的一个暑假里通读高一、高二教材)② 注意所做题目使用知识点覆盖范围的变化,有意识地思考、研究这些知识点在课本中所处的地位和相互之间的联系。

注意到老师选题的综合性在不断地加强。③ 明了课本从前到后的知识结构,将整个知识体系框架化、网络化。

通观高中数学教材,是由一个大陆、一个半岛和一个群岛组成的。这个大陆,就是二维空间的形与数,涉及集合、映射与函数,方程与不等式,数列及其极限,直角坐标系下的点与数对、曲线与方程、曲线的交点、参数方程及相关参数的意义,导数及其应用;这个半岛,是指立体几何。

它的体系与平面几何一脉相承,都是古典的公理体系,进行严密的推理论证,且立体几何问题一般都要化归为平面几何问题来加以解决。当然,还要特别关注向量这一工具的作用,总结出利用面向量解决立体几何问题的基本模式。

这个群岛,是指离散数学撒在中学教材中的一些珍珠,如排列组合、二项式定理、概率与统计、数学归纳法等。中学数学内容的结构可看作是数与点的集合,数的集合形成了代数式、函数、复数集、排列与组合四大块,点的集合构成了图形,可分为平面图形(平面几何)、空间图形(立体几何)、坐标平面上的图形(解析几何)三大块,每块下面再列出具体的内容和要点,纵向横向联系,这就构成了中学数学知识网络图,如“函数”这部分纵横向联系的知识结构,能提炼解题所用知识点,并说出其出处。

④经常将使用最多的知识点总结起来,研究重点知识所在章节,并了解各章节在课本中的地位和作用。以下列举各章节的重点,供参考.1.函数与不等式(主体).代数以函数为主干,不等式与函数的结合是“热点'”.(1)关于函数性质.单调性、奇偶性、周期性(常以三角函数为载体)、对称性及反函数等处处可考.常以具体函数,结合图象的几何直观展开,有时作适当抽象.这种题型较难,而通过找到一个符合条件的常见函数作为解决本题的入手是一个不错的方法.(2)关于一元二次函数,是重中之重,有关性质及应用的训练要深入、广泛.函数值域(最值),以二次函数或转化为二次函数的值域,待别是含参变量的二次函数值域研究为重点;方法以突出配方、换元和基本不等式法为重点.一元二次方程根的分布与讨论,一元二次不等式解的讨论,二次曲线交点问题,都与一元二次函数,息息相关,在训练中应占较大比重.强化“三个二次式”的复习。

(3)关于不等式证明.与函数联系的不等式证明,与数列联系结合数学归纳法是重点.方法要突出比较法和利用基本不等式的公式法.对于放缩法虽不是高考重点,因历年考题中都或多或少用到放缩法,掌握几种简单的放缩技巧是必要的.证明不等式要善于分析式子结构特征和寻找已知求证之间的差异,从中找到与相关定理的联系来作为解决问题的突破口.(4)关于解不等式.以熟练掌握一元二次不等式及可化为一元二次不等式的综合题型为目标,突出灵活转化,突出分类讨论.解不等式往往带有字母,需要讨论,还需要掌握转化、数。

4.高中数学所有知识点归纳

高考数学基础知识汇总第一部分 集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;(2) 注意:讨论的时候不要遗忘了 的情况。

(3) 第二部分 函数与导数1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、、等);⑨导数法3.复合函数的有关问题(1)复合函数定义域求法:① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:①首先将原函数 分解为基本函数:内函数 与外函数 ;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。注意:外函数 的定义域是内函数 的值域。

4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵ 是奇函数 ;⑶ 是偶函数 ;⑷奇函数 在原点有定义,则 ;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;6.函数的单调性⑴单调性的定义:① 在区间 上是增函数 当 时有 ;② 在区间 上是减函数 当 时有 ;⑵单调性的判定1 定义法:注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法(见2 (2));④图像法。

注:证明单调性主要用定义法和导数法。7.函数的周期性(1)周期性的定义:对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。

所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。

(2)三角函数的周期① ;② ;③ ;④ ;⑤ ;⑶函数周期的判定①定义法(试值) ②图像法 ③公式法(利用(2)中结论)⑷与周期有关的结论① 或 的周期为 ;② 的图象关于点 中心对称 周期为2 ;③ 的图象关于直线 轴对称 周期为2 ;④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;8.基本初等函数的图像与性质⑴幂函数: ( ;⑵指数函数: ;⑶对数函数: ;⑷正弦函数: ;⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;⑻其它常用函数:1 正比例函数: ;②反比例函数: ;特别的 2 函数 ;9.二次函数:⑴解析式:①一般式: ;②顶点式: , 为顶点;③零点式: 。⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。

⑶二次函数问题解决方法:①数形结合;②分类讨论。10.函数图象: ⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法⑵图象变换:1 平移变换:ⅰ ,2 ———“正左负右” ⅱ ———“正上负下”;3 伸缩变换:ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;4 对称变换:ⅰ ;ⅱ ;ⅲ ; ⅳ ;5 翻转变换:ⅰ ———右不动,右向左翻( 在 左侧图象去掉);ⅱ ———上不动,下向上翻(| |在 下面无图象);11.函数图象(曲线)对称性的证明(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;注:①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;12.函数零点的求法:⑴直接法(求 的根);⑵图象法;⑶二分法.13.导数 ⑴导数定义:f(x)在点x0处的导数记作 ;⑵常见函数的导数公式: ① ;② ;③ ;④ ;⑤ ;⑥ ;⑦ ;⑧ 。

⑶导数的四则运算法则: ⑷(理科)复合函数的导数: ⑸导数的应用: ①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?②利用导数判断函数单调性:ⅰ 是增函数;ⅱ 为减函数;ⅲ 为常数; ③利用导数求极值:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得极值。④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。

14.(理科)定积分 ⑴定积分的定义: ⑵定积分的性质:① ( 常数);② ;③ (其中 。⑶微积分基本定理(牛顿—莱布尼兹公式): ⑷定积分的应用:①求曲边梯形的面积: ; 3 求变速直线运动的路程: ;③求变力做功: 。

第三部分 三角函数、三角恒等变换与解三角形1.⑴角度制与弧度制的互化: 弧度 , 弧度, 弧度 ⑵弧长公式: ;扇形面。

5.高中数学知识点及公式大全

这个不知道行不行啊?1、函数 函数是历年高考命题的重点,集合、函数的定义域、值域、图象、奇偶性、单调性、周 期性、最值、反函数以及具体函数的图象及性质在高考试题中屡见不鲜.因此须注意以下几点.(1)集合是近代数学中最基本的概念之一,集合观点渗透于中学数学内容的各个方面,所以我们应弄懂集合的概念,掌握集合元素的性质,熟练地进行集合的交、并、补运算.同时,应准确地理解以集合形式出现的数学语言和符号.(2)函数是中学中最重要的内容之一,主要从定义、图象、性质三方面加以研究.在复习时要全面掌握、透彻理解每一个知识点.为了提高复习质量,我们提出下述几个问题:①掌握图象变换的常用方法(参照南师大第一学期教材图象变换一节)特别注意:凡变换均在自变量 上进行.②求函数的最值是一种重要的题型.要掌握函数最值的求法,特别注意二次函数在定区间上的最值问题以及有些问题可能隐藏范围,因此范围问题是二次函数最值的关键.另外二次分式函数的最值亦应引起注意,它的基本解法是“ ”法,当然有一部分可以转化为函数 的形式,而后与基本不等式相联系,或用函数的单调性求解.③学会解简单的函数方程,认真对待指数或对数中含参数问题的求解方法,特别注意对数的真数必须“>0”,注意方程求解时的等价性.2、三角 三角包括两部分内容:三角函数和两角和与差的三角函数.三角函数主要考查三角函数的性质、图象变换、求函数解析式、最小正周期等. 两角和与差的三角函数中公式较多,应在掌握这些公式的内在联系及推导过程的基础上,理解并熟悉这些公式.特别注意以下几个问题:(1)和、差、倍、半角公式都是用单角的三角函数表示复角(和、差、倍、半角)的三角函数.这就决定了这些公式应用的广泛性,即这些公式可以将三角函数统一成单角的三角函数.(2)了解公式中角的取值范围,凡使公式中某个三角函数或某个式子失去意义的角,都不适合公式.例如: ( )类似还有一些,请自己注意.(3)半角公式中的无理表达式前面的符号取舍,由公式左端的三角函数中角的范围决定,半角正切公式的有理表达式中,无需选择符合,但 与 的符合是一致的.(4)掌握公式的正用、反用、变形用及在特定条件下用,它可以提高思维起点,缩短思维线路,从而使运算流畅自然.例如: = ; ; ; .(5)三角函数式的化简与求值,这是中学数学中重要内容之一,并且与解三角形相集合,有的还与复数的三角形式运算相联系,因此须注意常用方法和技巧:切割化弦、升降幂、和积互化、“1”的互化、辅助元素法等.3、不等式 有关不等式的高考试题分布极为广泛,在客观题中主要考查不等式的性质、简单不等式的解法以及均值不等式的初步应用.经常以比较大小、求不等式的解集、求函数的定义域、值域、最值等形式出现.在中档题中,求解不等式与分类讨论相关联;特别是近几年来强调考查逻辑推理能力,增加了一个代数推理题,也和不等式的证明相关联.在压轴题中,无论函数题、还是解析几何题,也往往需要使用不等式的有关知识.在复习中应注意下述几个问题:(1)掌握比较大小的常用方法:作差、作商、平方作差、图象法.(2)熟练掌握用均值不等式求最值,必须注意三个条件:一正;二定;三相等.三者缺一不可.(3)把握解含参数的不等式的注意事项 解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:① 在不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.② 在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进 行讨论.③ 当解集的边界值含参数时,则需对零值的顺序进行讨论.4、数列 本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;计算 时,应分为 时, , 时, ;求一般数列的和时还应考虑字母的取值或项数的奇偶性.④ 整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整 体思想求解.(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.5、复数 高考试题中有关复数的题目的内容比较分散,有的是考查复数概念的,有的是考查复数运算的,有的是考查复。

6.怎么样系统学习高中数学

楼主您好!我是高考过来人,其实高中数学主干并不多:

1.集合和数列

2.三角函数和平面向量

3.立体几何

4.函数与不等式

5.平面解析几何

6.概率和统计

凭着印象,大概就这么多,其实数学并不难学,只要你掌握了基础知识和一定的母题后,大部分的分数就能拿了。然后个人推荐天星教育的高考题库,上面都是近几年的高考题还有模拟题,分章节,非常实用。题目做杂了反而浪费时间,要做就做经典的题,高考题是最经典。最好卖合订本,便宜一些。还有天星试题调研,我几乎每一期都买了,我是高三的时候买的,它是一小册一小册出版的,比如集合,数列出一本,上面主要是题型归类,详细的讲解,方法归纳,很贴近学生,所选题目可谓优中选优,都是极具代表性的。其实天星教育的书都很经典的,我一直很信任她,比如说45套,几乎人手一本。建议楼主要把眼光放在高考,一切为高考服务,其实离高考也不远了,所以要做好充分准备,多向老师讨学习经验。我当时也是数学差。其实没啥巧,就是做题,我当时最喜欢做经典的题,也许只是一个小小的选择题,就可以辐射一大片知识点,实现的章节之间的联会贯通,这就是经典,而高考题恰好就是这样,高考题库更是优中选优,讲解非常详细,甚至还有一题多解的,力求最简便的方法解出,让人心服口服的感觉,做题是一种享受。如果你基础差的话,先看试题调研上的例题,然后再做高考题库。数学的话要细心,我高考时数学前18题都是满分,我平时数学很差的,就是临近高考时来了感觉,反正我提醒你,能拿的分一分不能丢,就能考出理想的成绩!!

然后楼主一定要和老师打成一片,很有利的!! 我QQ418981143,有事找学哥帮忙!!

关于系统的有关知识高中数学