高中向量知识
1.高中向量知识梳理
一、平面向量 定义:既有大小又有方向的量叫向量。
例:力、速度、加速度、冲量等 注意:1(数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。 2(从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。
向量的定义以及有关概念 3(向量是既有大小又有方向的量。长度相等、方向相同的向量相等。
4(正因为如此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置。 向量的表示方法: 1(几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫点) 2(字母表示法:可表示为(印刷时用黑体字) 模的概念:向量的大小——长度称为向量的模。
记作:|| 模是可以比较大小的 两个特殊的向量: 1(零向量——长度(模)为0的向量,记作。的方向是任意的。
注意与0的区别 2(单位向量——长度(模)为1个单位长度的向量叫做单位向量。 向量间的关系: 平行向量:方向相同或相反的非零向量叫做平行向量。
记作:∥∥;规定:与任一向量平行 相等向量:长度相等且方向相同的向量叫做相等向量。 记作:=;规定:= 任两相等的非零向量都可用一有向线段表示,与起点无关。
共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。 三、向量的加法 1.定义:求两个向量的和的运算,叫做向量的加法。
注意:两个向量的和仍旧是向量(简称和向量) 2.三角形法则:(口诀)“首尾相接” 注意: 1(“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点 2(可以推广到n个向量连加 3( 4(不共线向量都可以采用这种法则——三角形法则 3.加法的交换律和平行四边形法则 1(向量加法的平行四边形法则。2(向量加法的交换律:+=+ 3(向量加法的结合律:(+) +=+ (+) 向量的减法 用“相反向量”定义向量的减法 1(“相反向量”的定义:与a长度相同、方向相反的向量。
记作 (a 2(规定:零向量的相反向量仍是零向量。(((a) = a,任一向量与它的相反向量的和是零向量。
a + ((a) = 0,如果a、b互为相反向量,则a = (b, b = (a, a + b = 0 3(向量减法的定义:向量a加上的b相反向量,叫做a与b的差。 即:a ( b = a + ((b) 求两个向量差的运算叫做向量的减法。
用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a,则x叫做a与b的差,记作a ( b 求作差向量:已知向量a、b,求作向量 作法:在平面内取一点O, 作= a, = b 则= a ( b 即a ( b可以表示为从向量b的终点指向向量a的终点的向量。 注意:1(表示a ( b。
强调:差向量“箭头”指向被减数 2(用“相反向量”定义法作差向量,a ( b = a + ((b) 显然,此法作图较繁,但最后作图可统一。 五、实数与向量的积 实数λ与向量的积,记作:λ 定义:实数λ与向量的积是一个向量,记作:λ 1(|λ|=|λ。
2(λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ= 运算定律:结合律:λ(μ)=(λμ) ① 第一分配律:(λ+μ)=λ+μ ② 第二分配律:λ(+)=λ+λ ③ 六、向量共线的充要条件(向量共线定理) 若有向量(()、,实数λ,使=λ则由实数与向量积的定义知:与为共线向量 若与共线(()且||:||=μ,则当与同向时=μ 当与反向时=(μ 从而得:向量与非零向量共线的充要条件是:有且只有一个非零实数λ 使=λ 七、平面向量基本定理: 如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2 注意几个问题: 1( 、必须不共线,且它是这一平面内所有向量的一组基底 2( 这个定理也叫共面向量定理 3(λ1,λ2是被,,唯一确定的数量 八、平面向量数量积(内积)的定义,a(b = |a||b|cos(, 并规定0与任何向量的数量积为0。( 注意的几个问题;——两个向量的数量积与向量同实数积有很大区别 1(两个向量的数量积是一个实数,不是向量,符号由cos(的符号所决定。 2(两个向量的数量积称为内积,写成a(b;今后要学到两个向量的外积a*b,而ab是两个数量的积,书写时要严格区分。
3(在实数中,若a(0,且a(b=0,则b=0;但是在数量积中,若a(0,且a(b=0,不能推出b=0。因为其中cos(有可能为0。
这就得性质2。 4(已知实数a、b、c(b(0),则ab=bc ( a=c。
但是a(b = b(c ( a = c 如右图:a(b = |a||b|cos( = |b||OA| b(c = |b||c|cos( = |b||OA| (ab=bc 但a ( c 5(在实数中,有(a(b)c = a(b(c),但是(a(b)c ( a(b(c) 显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线。 向量的数量积的几何意义: 数量积a(b等于a的长度与b在a方向上投影|b|cos(的乘积。
两个向量的数量积的性质: 设a、b为两个非零向量,e是与b同向的单位向量。 1(e(a = a(e =|a|cos( 2(a(b ( a(b = 0 3(当a与b同向时,a(b = |a||b|;当a与b反向时,a(b = (|a||b|。
特别的a(a = |a|2或 4(cos( = 5(|a(b| ≤ |a||b| 平面向量的运算律 1、交换律:a ( b = b ( a 2、(a)(b =(a(b) = a((b) a + b)(c = a(c + b(c。
2.求一些关于高中向量的知识
向量向量是一种既有大小又有方向的量。
又称为矢量。 向量在线性代数中是指n个实数组成的有序数组,称为n维。
一般用α,β,γ等希腊字母表示。有时也用a,b,c等拉丁字母表示:α=(a1,a2。
an)称为n维向量。其中ai称为向量α的第i个分量。
(“a1”的“1”为a的下标,“ai”的“i”为a的下标,其他类推) 简介向量图片表示在数学中,通常用点表示位置,用射线表示方向。在平面内,从任一点出发的所有射线,可以分别用来表示平面内的各个方向。
向量的表示向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。向量也可用字母a、b、c等表示,或用表示向量的有向线段的起点和终点字母表示。
向量的大小,也就是向量的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量。平行向量与相等向量 方向相同或相反的非零向量叫做平行向量。
向量a、b、c平行,记作a∥b∥c。0向量长度为零,是起点与终点重合的向量,其方向不确定,数学上规定0与任一向量平行。
长度相等且方向相同的向量叫做相等向量。向量a与b相等,记作a=b。
零向量与零向量相等。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关。
向量空间的同构 在域F上的两个向量空间V与V' ,如果存在一个双射φ:V→V'并且φ(aμ bν)=aφ(μ) bφ(ν),a,b∈F,μ,ν∈V.这样V与V' 便是同构。向量线性映射 给两个向量空间V和W在同一个F场,设定由V到W的线性变换或“线性映射” . 这些由V到W的映射都有共同点就是它们保持总和及标量商数。
这个集合包含所有由V到W的线性映像,以 L(V,W) 来描述,也是一个F场里的向量空间。当V及W被确定后,线性映射可以用矩阵来表达。
同构是一对一的一张线性映射.如果在V 和W之间存在同构, 我们称这两个空间为同构;他们根本上是然后相同的。一个在F场的向量空间加上线性映像就可以构成一个范畴,即阿贝尔范畴。
概念化及额外结构 研究向量空间一般会涉及一些额外结构。额外结构如下:一个实数或复数向量空间加上长度概念。
就是范数称为赋范向量空间。一个实数或复数向量空间加上长度和角度的概念,称为内积空间。
一个向量空间加上拓扑学符合运算的(加法及标量乘法是连续映射)称为拓扑向量空间。一个向量空间加上双线性算子(定义为向量乘法)是个域代数。
子空间及基 一个向量空间V的一个非空子集合W在加法及标量乘法中表现密闭性,被称为V的线性子空间。给出一个向量集合B,那么包含它的最小子空间就称为它的扩张,记作span(B)。
给出一个向量集合B,若它的扩张就是向量空间V, 则称B为V的生成集。一个向量空间V最大的线性独立子集,称为这个空间的基。
若V=0,唯一的基是空集。对非零向量空间 V,基是 V 最小的生成集。
如果一个向量空间 V 拥有一个元素个数有限的生成集,那么就称V是一个有限维空间。向量空间的所有基拥有相同基数,称为该空间的维度。
例如,实数向量空间:R0,R1,R2,R3。
,R∞,。
中,Rn 的维度就是n。空间内的每个向量都有唯一的方法表达成基中元素的线性组合。
把基中元素排列,向量便可以座标系统来呈现。表示法图1,向量的几何表示向量的表示法:通常可以用几何的或代数、坐标的方法来表示向量。
向量的几何表示法:从空间中任意一点 A出发引一半射线l,并在其上另取一点B,则有向线段AB就代表一向量(图1),简记为,或用α表示;这向量的大小就是线段AB的长,其方向就是半射线l的方向。向量α的大小称为它的模或绝对值,记为。
一般说来,如果向量的起点A换作另一点A┡,终点也换作另一点B┡,使AB∥A┡B┡,且它们的指向也相同,又长度则认为向量与向量是相等或相同的向量:,仍可记为α。这样理解的向量有时也称为自由向量(起点可自由改变)。
当然根据实际情况,有时向量的起点不能随便改变(例如,如果向量α代表一个力,其起点A代表力的作用点,这时起点就不能随意改变),这种向量有时称为固端向量。这里一般只考虑自由向量。
一种特殊情况须加注意,就是B=A的情况,这时向量称为零向量,记为0。零向量的模为0,而且无确定方向。
按照自由向量的观点,规定两向量α,b相等的充分必要条件是:|α|=|b|,且(如果它们不是零向量)α,b的方向(包括指向)相同。 如果向量α,b(都≠0)所在直线平行或重合,则称α与b平行,记作α∥b。
向量-α指的是其模与α的模相等、且与α平行但指向相反的向量。如果向量α,b所在直线互相垂直,则称α与b互相垂直或正交,记作α⊥b。
此外还规定,任何向量α都与零向量0既平行又垂直。 根据定义,任何向量α与它自身平行。
如果向量α的模等于1(|α|=1),则称α为一单位向量。 图2,向量的坐标表示向量的代数表示法:向量的几何表示法既直观又简单。
但作为一种数学量,向量要参加运算,这种表示法有时就极不方便。下面向量的代数表示法就可克服这一困难。
在空间取定一右手坐标系(当然也可取左手坐标系,但为确定起见,不取左手系),如。
3.高中数学向量知识点
1、向量的加法:
AB+BC=AC
设a=(x,y) b=(x',y')
则a+b=(x+x',y+y')
向量的加法满足平行四边形法则和三角形法则。
向量加法的性质:
交换律:
a+b=b+a
结合律:
(a+b)+c=a+(b+c)
a+0=0+a=a
2、向量的减法
AB-AC=CB
a-b=(x-x',y-y')
若a//b
则a=eb
则xy`-x`y=0·
若a垂直b
则a·b=0
则xx`+yy`=0
3、向量的乘法
设a=(x,y) b=(x',y')
用坐标计算向量的内积:a·b(点积)=x·x'+y·y'
a·b=|a|·|b|*cosθ
a·b=b·a
(a+b)·c=a·c+b·c
a·a=|a|的平方
向量的夹角记为∈[0,π]
Ax+By+C=0的方向向量a=(-B,A)
(a·b)·c≠a·(b·c)
a·b=a·c不可推出b=c
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y)
x=(x1+λx2)/(1+λ)
则有
y=(y1+λy2)/(1+λ)
我们把上面的式子叫做有向线段P1P2的定比分点公式
4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣*∣a∣,当λ>0时,与a同方向;当λ实数λ叫做向量a的系数,乘数向量的几何意义时把向量a沿着的方向或反方向放大或缩小。
4.高中向量知识梳理
一、平面向量 定义:既有大小又有方向的量叫向量。
例:力、速度、加速度、冲量等 注意:1(数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。 2(从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。
向量的定义以及有关概念 3(向量是既有大小又有方向的量。长度相等、方向相同的向量相等。
4(正因为如此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置。 向量的表示方法: 1(几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫点) 2(字母表示法:可表示为(印刷时用黑体字) 模的概念:向量的大小——长度称为向量的模。
记作:|| 模是可以比较大小的 两个特殊的向量: 1(零向量——长度(模)为0的向量,记作。的方向是任意的。
注意与0的区别 2(单位向量——长度(模)为1个单位长度的向量叫做单位向量。 向量间的关系: 平行向量:方向相同或相反的非零向量叫做平行向量。
记作:∥∥;规定:与任一向量平行 相等向量:长度相等且方向相同的向量叫做相等向量。 记作:=;规定:= 任两相等的非零向量都可用一有向线段表示,与起点无关。
共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。 三、向量的加法 1.定义:求两个向量的和的运算,叫做向量的加法。
注意:两个向量的和仍旧是向量(简称和向量) 2.三角形法则:(口诀)“首尾相接” 注意: 1(“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点 2(可以推广到n个向量连加 3( 4(不共线向量都可以采用这种法则——三角形法则 3.加法的交换律和平行四边形法则 1(向量加法的平行四边形法则。2(向量加法的交换律:+=+ 3(向量加法的结合律:(+) +=+ (+) 向量的减法 用“相反向量”定义向量的减法 1(“相反向量”的定义:与a长度相同、方向相反的向量。
记作 (a 2(规定:零向量的相反向量仍是零向量。(((a) = a,任一向量与它的相反向量的和是零向量。
a + ((a) = 0,如果a、b互为相反向量,则a = (b, b = (a, a + b = 0 3(向量减法的定义:向量a加上的b相反向量,叫做a与b的差。 即:a ( b = a + ((b) 求两个向量差的运算叫做向量的减法。
用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a,则x叫做a与b的差,记作a ( b 求作差向量:已知向量a、b,求作向量 作法:在平面内取一点O, 作= a, = b 则= a ( b 即a ( b可以表示为从向量b的终点指向向量a的终点的向量。 注意:1(表示a ( b。
强调:差向量“箭头”指向被减数 2(用“相反向量”定义法作差向量,a ( b = a + ((b) 显然,此法作图较繁,但最后作图可统一。 五、实数与向量的积 实数λ与向量的积,记作:λ 定义:实数λ与向量的积是一个向量,记作:λ 1(|λ|=|λ。
2(λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ= 运算定律:结合律:λ(μ)=(λμ) ① 第一分配律:(λ+μ)=λ+μ ② 第二分配律:λ(+)=λ+λ ③ 六、向量共线的充要条件(向量共线定理) 若有向量(()、,实数λ,使=λ则由实数与向量积的定义知:与为共线向量 若与共线(()且||:||=μ,则当与同向时=μ 当与反向时=(μ 从而得:向量与非零向量共线的充要条件是:有且只有一个非零实数λ 使=λ 七、平面向量基本定理: 如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2 注意几个问题: 1( 、必须不共线,且它是这一平面内所有向量的一组基底 2( 这个定理也叫共面向量定理 3(λ1,λ2是被,,唯一确定的数量 八、平面向量数量积(内积)的定义,a(b = |a||b|cos(, 并规定0与任何向量的数量积为0。( 注意的几个问题;——两个向量的数量积与向量同实数积有很大区别 1(两个向量的数量积是一个实数,不是向量,符号由cos(的符号所决定。 2(两个向量的数量积称为内积,写成a(b;今后要学到两个向量的外积a*b,而ab是两个数量的积,书写时要严格区分。
3(在实数中,若a(0,且a(b=0,则b=0;但是在数量积中,若a(0,且a(b=0,不能推出b=0。因为其中cos(有可能为0。
这就得性质2。 4(已知实数a、b、c(b(0),则ab=bc ( a=c。
但是a(b = b(c ( a = c 如右图:a(b = |a||b|cos( = |b||OA| b(c = |b||c|cos( = |b||OA| (ab=bc 但a ( c 5(在实数中,有(a(b)c = a(b(c),但是(a(b)c ( a(b(c) 显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线。 向量的数量积的几何意义: 数量积a(b等于a的长度与b在a方向上投影|b|cos(的乘积。
两个向量的数量积的性质: 设a、b为两个非零向量,e是与b同向的单位向量。 1(e(a = a(e =|a|cos( 2(a(b ( a(b = 0 3(当a与b同向时,a(b = |a||b|;当a与b反向时,a(b = (|a||b|。
特别的a(a = |a|2或 4(cos( = 5(|a(b| ≤ |a||b| 平面向量的运算律 1、交换律:a ( b = b ( a 2、(a)(b =(a(b) = a((b) a + b)(c = a(c + b(c。
5.求一些关于高中向量的知识
设a=(x,y),b=(x',y')。
1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。
a+b=(x+x',y+y')。 a+0=0+a=a。
向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。
当λ>0时,λa与a同方向; 当λ当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ当∣λ∣0)或反方向(λ数与向量的乘法满足下面的运算律 结合律:(λa)•b=λ(a•b)=(a•λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。
② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a•b=x•x'+y•y'。 向量的数量积的运算律 a•b=b•a(交换律); (λa)•b=λ(a•b)(关于数乘法的结合律); (a+b)•c=a•c+b•c(分配律); 向量的数量积的性质 a•a=|a|的平方。
a⊥b 〈=〉a•b=0。 |a•b|≤|a|•|b|。
向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。 2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。
3、|a•b|≠|a|•|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a*b。
若a、b不共线,则a*b的模是:∣a*b∣=|a|•|b|•sin〈a,b〉;a*b的方向是:垂直于a和b,且a、b和a*b按这个次序构成右手系。若a、b共线,则a*b=0。
向量的向量积性质: ∣a*b∣是以a和b为边的平行四边形面积。 a*a=0。
a‖b〈=〉a*b=0。 向量的向量积运算律 a*b=-b*a; (λa)*b=λ(a*b)=a*(λb); (a+b)*c=a*c+b*c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。
向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。 定比分点 定比分点公式(向量P1P=λ•向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。
则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。
(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 [编辑本段]向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是 xy'-x'y=0。
零向量0平行于任何向量。 [编辑本段]向量垂直的充要条件 a⊥b的充要条件是 a•b=0。
a⊥b的充要条件是 xx'+yy'=0。 零向量0垂直于任何向量.。
6.求高中数学向量知识点
1、向量的加法: AB+BC=AC 设a=(x,y) b=(x',y') 则a+b=(x+x',y+y') 向量的加法满足平行四边形法则和三角形法则。
向量加法的性质: 交换律: a+b=b+a 结合律: (a+b)+c=a+(b+c) a+0=0+a=a 2、向量的减法 AB-AC=CB a-b=(x-x',y-y') 若a//b 则a=eb 则xy`-x`y=0· 若a垂直b 则a·b=0 则xx`+yy`=0 3、向量的乘法 设a=(x,y) b=(x',y') 用坐标计算向量的内积:a·b(点积)=x·x'+y·y' a·b=|a|·|b|*cosθ a·b=b·a (a+b)·c=a·c+b·c a·a=|a|的平方 向量的夹角记为∈[0,π] Ax+By+C=0的方向向量a=(-B,A) (a·b)·c≠a·(b·c) a·b=a·c不可推出b=c 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y) x=(x1+λx2)/(1+λ) 则有 y=(y1+λy2)/(1+λ) 我们把上面的式子叫做有向线段P1P2的定比分点公式 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣*∣a∣,当λ>0时,与a同方向;当λ 实数λ叫做向量a的系数,乘数向量的几何意义时把向量a沿着的方向或反方向放大或缩小。
7.谁可以把有关高一数学向量那部分的知识点,易错点,公式总结一下.
设a=(x,y),b=(x',y').1、向量的加法 向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=(x+x',y+y').a+0=0+a=a.向量加法的运算律:交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c).2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.当λ>0时,λa与a同方向; 当λ1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ0)或反方向(λ。