初中数学知识

bdqnwqk2年前问题9

1.初中数学知识点大全,详细点的

初中数学知识点总结 一、基本知识 一、数与代数A、数与式: 1、有理数 有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。 绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算: 加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。 减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。 除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数 无理数:无限不循环小数叫无理数 平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。 3、代数式 代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。 4、整式与分式 整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 公式两条:平方差公式/完全平方公式 整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。 分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。 分式的运算: 乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。 加减法:①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。 分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。 B、方程与不等式 1、方程与方程组 一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。 解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 二。

2.初中数学都讲哪些知识

初中数学都讲哪些知识七年级上册1.3 有理数的加减法 实验与探究 填幻方 阅读与思考 中国人最先使用负数 1.4 有理数的乘除法 观察与思考 翻牌游戏中的数学道理 1.5 有理数的乘方 数学活动 小结 复习题1 第二章 整式的加减 2.1 整式 阅读与思考 数字1与字母X的对话 2.2 整式的加减 信息技术应用 电子表格与数据计算 数学活动 小结 复习题2 第三章 一元一次方程 3.1 从算式到方程 阅读与思考 “方程”史话 3.2 解一元一次方程(一)——合并同类项与移项 实验与探究 无限循环小数化分数 3.3 解一元一次方程(二)——去括号与去分母 3.4 实际问题与一元一次方程 数学活动 小结 复习题3 第四章 图形认识初步 4.1 多姿多彩的图形 阅读与思考 几何学的起源 4.2 直线、射线、线段 阅读与思考 长度的测量 4.3 角 4.4 课题学习 设计制作长方体形状的包装纸盒 数学活动 小结 复习题4 部分中英文词汇索引 七年级下册第五章 相交线与平行线 5.1 相交线 5.1.2 垂线 5.1.3 同位角、内错角、同旁内角 观察与猜想 5.2 平行线及其判定 5.2.1 平行线 5.3 平行线的性质 5.3.1 平行线的性质 5.3.2 命题、定理 5.4 平移 教学活动 小结 第六章 平面直角坐标系 6.1 平面直角坐标系 6.2 坐标方法的简单应用 阅读与思考 6.2 坐标方法的简单应用 教学活动 小结 第七章 三角形 7.1 与三角形有关的线段 7.1.2 三角形的高、中线与角平分线 7.1.3 三角形的稳定性 信息技术应用 7.2 与三角形有关的角 7.2.2 三角形的外角 阅读与思考 7.3 多变形及其内角和 阅读与思考 7.4 课题学习 镶嵌 教学活动 小结 第八章 二元一次方程组 8.1 二元一次方程组 8.2 消元——二元一次方程组的解法 8.3 实际问题与二元一次方程组 阅读与思考 *8.4 三元一次方程组解法举例 教学活动 小结 第九章 不等式与不等式组 9.1 不等式 阅读与思考 9.2 实际问题与一元一次不等式 实验与探究 9.3 一元一次不等式组 阅读与思考 教学活动 小结 第十章 数据的收集、整理与描述 10.1 统计调查 实验与探究 10.2 直方图 10.3 课题学习从数据谈节水 教学活动 小结 部分中英文词汇索引 八年级上册第十一章 一次函数 11.1 变量与函数 信息技术应用 用计算机画函数图象 11.2 一次函数 阅读与思考 科学家如何测算地球的年龄 11.3 用函数观点看方程(组)与不等式 数学活动 小结 复习题11第十二章 数据的描述 12.1 几种常见的统计图表 12.2 用图表描述数据 信息技术应用 利用计算机画统计图 阅读与思考 作者可能是谁 12.3 课题学习 从数据谈节水 数学活动 小结 复习题12第十三章 全等三角形 13.1 全等三角形 13.2 三角形全等的条件 阅读与思考 为什么要证明 13.3 角的平分线的性质 数学活动 小结 复习题13第十四章 轴对称 14.1 轴对称 14.2 轴对称变换 信息技术应用 探索轴对称的性质 14.3 等腰三角形 实验与探究 三角形中边与角之间的不等关系 数学活动 小结 复习题14第十五章 整式 15.1 整式的加减 15.2 整式的乘法 15.3 乘法公式 阅读与思考 杨辉三角 15.4 整式的除法 15.5 因式分解 观察与猜想 x2+(p+q)x+pq型式子的因式分解 数学活动 小结 复习题15部分中英文词汇索引 八年级下册第十六章 分式 16.1 分式 16.1 分式的运算 阅读与思考 容器中的水能倒完吗 16.1 分式方程 数学活动 小结 复习题16第十七章 反比例函数 17.1 反比例函数 17.1 实际问题与反比例函数 阅读与思考 生活中的反比例关系 数学活动 小结 复习题17第十八章 勾股定理 18.1 勾股定理 18.2 勾股定理的逆定理 数学活动 小结 复习题18第十九章 四边形 19.1 平行四边形 19.1 特殊的平行四边形 实验与探究 巧拼正方形 19.1 梯形 观察与猜想 平面直角坐标系中的特殊四边形 数学活动 小结 复习题19第二十章 数据的分析 20.1 数据的代表 20.2 数据的波动 信息技术应用 用计算机求几种统计量 阅读与思考 数据波动的几种度量 20.3 课题学习 体质健康测试中的数据分析 数学活动 小结 复习题20部分中英文词汇索引 九年级上册第二十一章 二次根式 21.1 二次根式 21.2 二次根式乘除 阅读与思考 海伦——秦九韶公式 数学活动 小结 复习题21第二十二章 一元二次方程 22.1 一元二次方程 22.2 降次——解一元二次方程 阅读与思考 黄金分割数 22.3 实际问题与一元二次方程 观察与猜想 发现一元二次方程根与系数的关系 数学活动 小结 复习题22第二十三章 旋转 23.1 图形的旋转 23.2 中心对称 信息技术应用 探索旋转的性质 23.3 课题学习 图案设计 数学活动 小结 复习题23第二十四章 圆 24.1 圆 24.2 与圆有关的位置关系 24.3 正多边形和圆 阅读与思考 圆周率π 24.4 弧长和扇形面积 实验与研究 设计跑道 数学活动 小结 复习题24第二十五章 概率初步 25.1 概率 25.2 用列举法求概率 阅读与思考 概率与中奖 25.3 利用频率估计概率 阅读与思考 布丰投针实验 25.4 课题学习 键盘上字母的排列规律 数学活动 小结 复习题25部分中英文词汇索引 九年级下册第二十六章 二次函数 26.1 二次函数 实验与探究 推测植物的生长与温度的关系 26.2 用函数观点看一元二次方程 信息技术应用 探索二次函数的性质 26.3 实际问题与二次函数 数学活动 小结 复习题26第二十四。

3.人教版初中数学所学的所有知识点归纳

那么弦的一半是它分直径所成的 两条线段的比例中项 132切割线定理 从圆外一点引圆的切线和割线、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点:d,这两个圆是同心圆 139正n边形的每个内角都等于(n-2)*180°/n 140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141正n边形的面积Sn=pnrn/2 p表示正n边形的周长 142正三角形面积√3a/4 a表示边长 143如果在一个顶点周围有k个正n边形的角,所对的弦 相等,因此k*(n-2)180°/n=360°化为(n-2)(k-2)=4 144弧长计算公式,是这个角的平分线 108到两条平行线距离相等的点的轨迹,这两条直线也互相平行 9 同位角相等、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,内错角相等 14 两直线平行,两直线平行 10 内错角相等,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,所得的对应 线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),并且互相垂直平分,是和这两条平行线平行且距 离相等的一条直线 109定理 不在同一直线上的三点确定一个圆;同圆或等圆中,并且任何一个外角都等于它 的内对角 121①直线L和⊙O相交 d②直线L和⊙O相切 d=r ③直线L和⊙O相离 d>r 122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理 圆的切线垂直于经过切点的半径 124推论1 经过圆心且垂直于切线的直线必经过切点 125推论2 经过切点且垂直于切线的直线必经过圆心 126切线长定理 从圆外一点引圆的两条切线:S扇形=n兀R^2/360=LR/2 146内公切线长= d-(R-r) 外公切线长= d-(R+r) (还有一些,并且等于两底和的 一半 L=(a+b)÷2 S=L*h 83 (1)比例的基本性质 如果a,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点: ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线:d 84 (2)合比性质 如果a/b=c/d,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称、b的平方和,那么这两个弦切角也相等 130相交弦定理 圆内的两条相交弦,所得的对应线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,四条边都相等 70正方形性质定理2正方形的两条对角线相等,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138定理 任何正多边形都有一个外接圆和一个内切圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 ①平分弦(不是直径)的直径垂直于弦,对称点连线都经过对称中心,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a,相等的圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角,所构成的三角形与原三角形相似 91 相似三角形判定定理1 两角对应相等,切线长是这点到割 线与圆交点的两条线段长的比例中项 133推论 从圆外一点引圆的两条割线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,那么这条直线平行于三角形的第三边 89 平行于三角形的一边, 圆心和这一点的连线平分两条切线的夹角 127圆的外切四边形的两组对边的和相等 128弦切角定理 弦切角等于它所夹的弧对的圆周角 129推论 如果两个弦切角所夹的弧相等、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、两条弧,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,两三角形相似(ASA) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,如果它们的对应线段或延长线相交,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理。

4.初中数学有哪些知识点

二.知识概念

1.平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

3.平行四边形的判定 1.两组对边分别相等的四边形是平行四边形

2.对角线互相平分的四边形是平行四边形;

3.两组对角分别相等的四边形是平行四边形;

4.一组对边平行且相等的四边形是平行四边形。

4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。

5.直角三角形斜边上的中线等于斜边的一半。

6.矩形的定义:有一个角是直角的平行四边形。

7.矩形的性质: 矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD

8.矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

9.菱形的定义 :邻边相等的平行四边形。

10.菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

11.菱形的判定定理:1.一组邻边相等的平行四边形是菱形。

2.对角线互相垂直的平行四边形是菱形。

3.四条边相等的四边形是菱形。

12.S菱形=1/2*ab(a、b为两条对角线)

13.正方形定义:一个角是直角的菱形或邻边相等的矩形。

14.正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。

15.正方形判定定理: 1.邻边相等的矩形是正方形。 2.有一个角是直角的菱形是正方形。

16.梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。

17.直角梯形的定义:有一个角是直角的梯形

18.等腰梯形的定义:两腰相等的梯形。

19.等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

20.等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

一部分

很高兴为您解答有用请采纳

5.初中数学知识点总结

1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理 有两角和它们的夹边对应相等的两个三角形全等 24 推论 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理 有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)*180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a*b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且。

6.高中数学知识点及公式大全

这个不知道行不行啊?1、函数函数是历年高考命题的重点,集合、函数的定义域、值域、图象、奇偶性、单调性、周期性、最值、反函数以及具体函数的图象及性质在高考试题中屡见不鲜.因此须注意以下几点.(1)集合是近代数学中最基本的概念之一,集合观点渗透于中学数学内容的各个方面,所以我们应弄懂集合的概念,掌握集合元素的性质,熟练地进行集合的交、并、补运算.同时,应准确地理解以集合形式出现的数学语言和符号.(2)函数是中学中最重要的内容之一,主要从定义、图象、性质三方面加以研究.在复习时要全面掌握、透彻理解每一个知识点.为了提高复习质量,我们提出下述几个问题:①掌握图象变换的常用方法(参照南师大第一学期教材图象变换一节)特别注意:凡变换均在自变量 上进行.②求函数的最值是一种重要的题型.要掌握函数最值的求法,特别注意二次函数在定区间上的最值问题以及有些问题可能隐藏范围,因此范围问题是二次函数最值的关键.另外二次分式函数的最值亦应引起注意,它的基本解法是“ ”法,当然有一部分可以转化为函数 的形式,而后与基本不等式相联系,或用函数的单调性求解.③学会解简单的函数方程,认真对待指数或对数中含参数问题的求解方法,特别注意对数的真数必须“>0”,注意方程求解时的等价性.2、三角 三角包括两部分内容:三角函数和两角和与差的三角函数.三角函数主要考查三角函数的性质、图象变换、求函数解析式、最小正周期等. 两角和与差的三角函数中公式较多,应在掌握这些公式的内在联系及推导过程的基础上,理解并熟悉这些公式.特别注意以下几个问题:(1)和、差、倍、半角公式都是用单角的三角函数表示复角(和、差、倍、半角)的三角函数.这就决定了这些公式应用的广泛性,即这些公式可以将三角函数统一成单角的三角函数.(2)了解公式中角的取值范围,凡使公式中某个三角函数或某个式子失去意义的角,都不适合公式.例如: ( )类似还有一些,请自己注意.(3)半角公式中的无理表达式前面的符号取舍,由公式左端的三角函数中角的范围决定,半角正切公式的有理表达式中,无需选择符合,但 与 的符合是一致的.(4)掌握公式的正用、反用、变形用及在特定条件下用,它可以提高思维起点,缩短思维线路,从而使运算流畅自然.例如: = ; ; ; .(5)三角函数式的化简与求值,这是中学数学中重要内容之一,并且与解三角形相集合,有的还与复数的三角形式运算相联系,因此须注意常用方法和技巧:切割化弦、升降幂、和积互化、“1”的互化、辅助元素法等.3、不等式有关不等式的高考试题分布极为广泛,在客观题中主要考查不等式的性质、简单不等式的解法以及均值不等式的初步应用.经常以比较大小、求不等式的解集、求函数的定义域、值域、最值等形式出现.在中档题中,求解不等式与分类讨论相关联;特别是近几年来强调考查逻辑推理能力,增加了一个代数推理题,也和不等式的证明相关联.在压轴题中,无论函数题、还是解析几何题,也往往需要使用不等式的有关知识.在复习中应注意下述几个问题:(1)掌握比较大小的常用方法:作差、作商、平方作差、图象法.(2)熟练掌握用均值不等式求最值,必须注意三个条件:一正;二定;三相等.三者缺一不可.(3)把握解含参数的不等式的注意事项解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:① 在不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.② 在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③ 当解集的边界值含参数时,则需对零值的顺序进行讨论.4、数列本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;计算 时,应分为 时, , 时, ;求一般数列的和时还应考虑字母的取值或项数的奇偶性.④ 整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整体思想求解.(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.5、复数高考试题中有关复数的题目的内容比较分散,有的是考查复数概念的,有的是考查复数运算的,有的是考查复数几。

初中数学知识