七到九年级数学的概念及知识点

bdqnwqk1年前基础5

1.七年级至九年级数学知识点总结

初中数学概念及定义总结 三角形三条边的关系 定理:三角形两边的和大于第三边 推论:三角形两边的差小于第三边 三角形内角和 三角形内角和定理 三角形三个内角的和等于180° 推论1 直角三角形的两个锐角互余 推论2 三角形的一个外角等于和它不相邻的两个内角和 推论3 三角形的一个外角大雨任何一个和它不相邻的内角 角的平分线 性质定理 在角的平分线上的点到这个角的两边的距离相等 判定定理 到一个角的两边的距离相等的点,在这个角的平分线上 等腰三角形的性质 等腰三角形的性质定理 等腰三角形的两底角相等 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 推论2 等边三角形的各角都相等,并且每一个角等于60° 等腰三角形的判定 判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等 推论1 三个角都相等的三角形是等边三角形 推论2 有一个角等于60°的等腰三角形是等边三角形 推论3 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 线段的垂直平分线 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 轴对称和轴对称图形 定理1 关于某条之间对称的两个图形是全等形 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 定理3 两个图形关于某直线对称,若它们的对应线段或延长线相交,那么交点在对称轴上 逆定理 若两个图形的对应点连线被同一条直线垂直平分,那这两个图形关于这条直线对称 勾股定理 勾股定理 直角三角形两直角边a、b的平方和,等于斜边c的平方,即 a2 + b2 = c2 勾股定理的逆定理 勾股定理的逆定理 如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形 四边形 定理 任意四边形的内角和等于360° 多边形内角和 定理 多边形内角和定理n边形的内角的和等于(n - 2)·180° 推论 任意多边形的外角和等于360° 平行四边形及其性质 性质定理1 平行四边形的对角相等 性质定理2 平行四边形的对边相等 推论 夹在两条平行线间的平行线段相等 性质定理3 平行四边形的对角线互相平分 平行四边形的判定 判定定理1 两组对边分别平行的四边形是平行四边形 判定定理2 两组对角分别相等的四边形是平行四边形 判定定理3 两组对边分别相等的四边形是平行四边形 判定定理4 对角线互相平分的四边形是平行四边形 判定定理5 一组对边平行且相等的四边形是平行四边形 矩形 性质定理1 矩形的四个角都是直角 性质定理2 矩形的对角线相等 推论 直角三角形斜边上的中线等于斜边的一半 判定定理1 有三个角是直角的四边形是矩形 判定定理2 对角线相等的平行四边形是矩形 菱形 性质定理1 菱形的四条边都相等 性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 判定定理1 四边都相等的四边形是菱形 判定定理2 对角线互相垂直的平行四边形是菱形 正方形 性质定理1 正方形的四个角都是直角,四条边都相等 性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 中心对称和中心对称图形 定理1 关于中心对称的两个图形是全等形 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 梯形 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 三角形、梯形中位线 三角形中位线定理 三角形的中位线平行与第三边,并且等于它的一半 梯形中位线定理 梯形的中位线平行与两底,并且等于两底和的一半 比例线段 1、比例的基本性质 如果a∶b=c∶d,那么ad=bc 2、合比性质 3、等比性质 平行线分线段成比例定理 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 推论 平行与三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行与三角形的第三边 垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 推论1 (1) 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 (2) 弦的垂直平分线过圆心,并且平分弦所对的两条弧 (3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平分弦所夹的弧相等 圆心角、弧、弦、弦心距之间的关系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等 圆周角 定理 一条弧所对的圆周角等于它所对的圆心角的一半 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直角 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 圆。

2.初中数学七年级到九年级的所有知识点 要具体一点的

初中数学知识点总结 一、基本知识 一、数与代数A、数与式: 1、有理数 有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。 绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算: 加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。 减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。 除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数 无理数:无限不循环小数叫无理数 平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。 3、代数式 代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。 4、整式与分式 整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 公式两条:平方差公式/完全平方公式 整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。 分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。 分式的运算: 乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。 加减法:①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。 分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。 B、方程与不等式 1、方程与方程组 一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。 解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 二。

3.九年级全册数学所有概念急需九年级数学知识点总结越详细越好

1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理 三角形两边的和大于第三边 16、推论 三角形两边的差小于第三边 17、三角形内角和定理 三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余 19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等 24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理(SSS) 有三边对应相等的两个三角形全等 26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1 在角的平分线上的点到这个角的两边的距离相等 28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1 三个角都相等的三角形是等边三角形 36、推论 2 有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1 关于某条直线对称的两个图形是全等形 43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形 48、定理 四边形的内角和等于360° 49、四边形的外角和等于360° 50、多边形内角和定理 n边形的内角的和等于(n-2)*180° 51、推论 任意多边的外角和等于360° 52、平行四边形性质定理1 平行四边形的对角相等 53、平行四边形性质定理2 平行四边形的对边相等 54、推论 夹在两条平行线间的平行线段相等 55、平行四边形性质定理3 平行四边形的对角线互相平分 56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形 58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60、矩形性质定理1 矩形的四个角都是直角 61、矩形性质定理2 矩形的对角线相等 62、矩形判定定理1 有三个角是直角的四边形是矩形 63、矩形判定定理2 对角线相等的平行四边形是矩形 64、菱形性质定理1 菱形的四条边都相等 65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66、菱形面积=对角线乘积的一半,即S=(a*b)÷2 67、菱形判定定理1 四边都相等的四边形是菱形 68、菱形判定定理2 对角线互相垂直的平行四边形是菱形 69、正方形性质定理1 正方形的四个角都是直角,四条边都相等 70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71、定理1 关于中心对称的两个图形是全等的 72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75、等腰梯形的两条对角线相等 76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形 77、对角线相等的梯形是等腰梯形 78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也。

4.初一到初三数学知识点

初中数学知识点归纳. 有理数的加法运算 同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。 互为相反数求和,结果是零须记好。

【注】“大”减“小”是指绝对值的大小。 有理数的减法运算 减正等于加负,减负等于加正。

有理数的乘法运算符号法则 同号得正异号负,一项为零积是零。 合并同类项 说起合并同类项,法则千万不能忘。

只求系数代数和,字母指数留原样。 去、添括号法则 去括号或添括号,关键要看连接号。

扩号前面是正号,去添括号不变号。 括号前面是负号,去添括号都变号。

解方程 已知未知闹分离,分离要靠移完成。 移加变减减变加,移乘变除除变乘。

平方差公式 两数和乘两数差,等于两数平方差。 积化和差变两项,完全平方不是它。

完全平方公式 二数和或差平方,展开式它共三项。 首平方与末平方,首末二倍中间放。

和的平方加联结,先减后加差平方。 完全平方公式 首平方又末平方,二倍首末在中央。

和的平方加再加,先减后加差平方。 解一元一次方程 先去分母再括号,移项变号要记牢。

同类各项去合并,系数化“1”还没好。 求得未知须检验,回代值等才算了。

解一元一次方程 先去分母再括号,移项合并同类项。 系数化1还没好,准确无误不白忙。

因式分解与乘法 和差化积是乘法,乘法本身是运算。 积化和差是分解,因式分解非运算。

因式分解 两式平方符号异,因式分解你别怕。 两底和乘两底差,分解结果就是它。

两式平方符号同,底积2倍坐中央。 因式分解能与否,符号上面有文章。

同和异差先平方,还要加上正负号。 同正则正负就负,异则需添幂符号。

因式分解 一提二套三分组,十字相乘也上数。 四种方法都不行,拆项添项去重组。

重组无望试求根,换元或者算余数。 多种方法灵活选,连乘结果是基础。

同式相乘若出现,乘方表示要记住。 【注】 一提(提公因式)二套(套公式) 因式分解 一提二套三分组,叉乘求根也上数。

五种方法都不行,拆项添项去重组。 对症下药稳又准,连乘结果是基础。

二次三项式的因式分解 先想完全平方式,十字相乘是其次。 两种方法行不通,求根分解去尝试。

比和比例 两数相除也叫比,两比相等叫比例。 外项积等内项积,等积可化八比例。

分别交换内外项,统统都要叫更比。 同时交换内外项,便要称其为反比。

前后项和比后项,比值不变叫合比。 前后项差比后项,组成比例是分比。

两项和比两项差,比值相等合分比。 前项和比后项和,比值不变叫等比。

解比例 外项积等内项积,列出方程并解之。 求比值 由已知去求比值,多种途径可利用。

活用比例七性质,变量替换也走红。 消元也是好办法,殊途同归会变通。

正比例与反比例 商定变量成正比,积定变量成反比。 正比例与反比例 变化过程商一定,两个变量成正比。

变化过程积一定,两个变量成反比。 判断四数成比例 四数是否成比例,递增递减先排序。

两端积等中间积,四数一定成比例。 判断四式成比例 四式是否成比例,生或降幂先排序。

两端积等中间积,四式便可成比例。 比例中项 成比例的四项中,外项相同会遇到。

有时内项会相同,比例中项少不了。 比例中项很重要,多种场合会碰到。

成比例的四项中,外项相同有不少。 有时内项会相同,比例中项出现了。

同数平方等异积,比例中项无处逃。 根式与无理式 表示方根代数式,都可称其为根式。

根式异于无理式,被开方式无限制。 被开方式有字母,才能称为无理式。

无理式都是根式,区分它们有标志。 被开方式有字母,又可称为无理式。

求定义域 求定义域有讲究,四项原则须留意。 负数不能开平方,分母为零无意义。

指是分数底正数,数零没有零次幂。 限制条件不唯一,满足多个不等式。

求定义域要过关,四项原则须注意。 负数不能开平方,分母为零无意义。

分数指数底正数,数零没有零次幂。 限制条件不唯一,不等式组求解集。

解一元一次不等式 先去分母再括号,移项合并同类项。 系数化“1”有讲究,同乘除负要变向。

先去分母再括号,移项别忘要变号。 同类各项去合并,系数化“1”注意了。

同乘除正无防碍,同乘除负也变号。 解一元一次不等式组 大于头来小于尾,大小不一中间找。

大大小小没有解,四种情况全来了。 同向取两边,异向取中间。

中间无元素,无解便出现。 幼儿园小鬼当家,(同小相对取较小) 敬老院以老为荣,(同大就要取较大) 军营里没老没少。

(大小小大就是它) 大大小小解集空。(小小大大哪有哇) 解一元二次不等式 首先化成一般式,构造函数第二站。

判别式值若非负,曲线横轴有交点。 a正开口它向上,大于零则取两边。

代数式若小于零,解集交点数之间。 方程若无实数根,口上大零解为全。

小于零将没有解,开口向下正相反。 用平方差公式因式分解 异号两个平方项,因式分解有办法。

两底和乘两底差,分解结果就是它。 用完全平方公式因式分解 两平方项在两端,底积2倍在中部。

同正两底和平方,全负和方相反数。 分成两底差平方,方正倍积要为负。

两边为负中间正,底差平方相反数。 一平方又一平方,底积2倍在中路。

三正两底和平方,全负和方相反数。 分成两底差平方,。

5.【七年级上册数学知识点归纳】

七年级(上)数学知识点归纳与总结一、知识梳理知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数.它们都是比0小的数.0既不是正数也不是负数.我们可以用正数与负数表示具有相反意义的量.知识点2:有理数的概念和分类:整数和分数统称有理数.有理数的分类主要有两种:注:有限小数和无限循环小数都可看作分数.知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴.知识点4:绝对值的概念:(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零.注:任何一个数的绝对值均大于或等于0(即非负数).知识点5:相反数的概念:(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数.0的相反数是0.知识点6:有理数大小的比较:有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数.数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大.用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小.知识点7:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.知识点8:有理数加法运算律:加法交换律:两个数相加,交换加数的位置,和不变.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数.知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算.知识点11: 乘法与除法1.乘法法则 2.除法法则3.多个非零的数相乘除最后结果符号如何确定知识点12:倒数1. 倒数概念2. 如何求一个数的倒数?(注意与相反数的区别)知识点13:乘方1. 乘方的概念,乘方的结果叫什么?2. 认识底数,指数3. 正数的任何次幂是_________,零的任何次幂________负数的偶次幂是_________奇次幂是________知识点14:混合计算注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算.知识点15:科学记数法科学记数法的概念? 注意a的范围。

6.八至九年级的数学公式

八至九年级哪里会有数学公式。

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12 两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

7.总结一下七上的数学知识点

七年级数学人教版上册册知识点学习第一章 有理数1.1正数和负数①把0以外的数分为正数和负数.0是正数与负数的分界.②负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数1.2有理数1.2.1有理数①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数.②所有正整数组成正整数集合,所有负整数组成负整数集合.正整数,0,负整数统称整数.1.2.2数轴①具有原点,正方向,单位长度的直线叫数轴.1.2.3相反数①只有符号不同的数叫相反数.②0的相反数是0 正数的相反数是负数 负数的相反数是正数1.2.4绝对值①绝对值 |a|②性质:正数的绝对值是它的本身 负数的绝对值的它的相反数 0的绝对值的01.2.5数的大小比较①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.②正数大于0,0大于负数,正数大于负数.两个负数,绝对值大的反而小.1.3有理数的加减法1.3.1有理数的加法①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.③一个数同0相加,仍得这个数.④加法交换律:两个数相加,交换加数的位置,和不变.a+b=b+a⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.(a+b)+c=(a+c)+b1.3.2有理数的减法①减去一个数,等于加这个数的相反数.a-b=a+(-b) 1.4有理数的乘除法1.4.1有理数的乘法①两数相乘,同号得正,异号的负,并把绝对值相乘.②任何数同0相乘,都得0.③乘积是1的两个数互为倒数.④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数.⑤乘法交换律:两个数相乘,交换因数的位置,积相等.ab=ba⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.(ab)c=(ac)b ⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac1.4.2有理数的除法①除以一个不等0的数,等于乘以这个数的倒数.②两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果.④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行. 1.5有理数的乘方1.5.1乘方①求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在 中,a 叫做底数,n 叫做指数.②负数的奇次幂是负数,负数的偶次幂的正数.③正数的任何次幂都是正数,0的任何正整数次幂都是0.④做有理数的混合运算时,应注意以下运算顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行.1.5.2科学记数法.①把一个大于10的数表示成 的形式(其中a是整数数位只有一位的数, n是正整数),使用的是科学记数法.1.5.3近似数①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数.②近似数与准确数的接近程度,可以用精确度表示.③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字.第二章 整式的加减2.1整式①单项式:表示数或字母积的式子②单项式的系数:单项式中的数字因数③单项式的次数:一个单项式中,所有字母的指数和④几个单项式的和叫做多项式.每个单项式叫做多项式的项,不含字母的项叫做常数项.⑤多项式里次数最高项的次数,叫做这个多项式的次数.⑥单项式与多项式统称整式.2.2 整式的加减①同类项:所含字母相同,而且相同字母的次数相同的单项式.②把多项式中的同类项合并成一项,叫做合并同类项.③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.④如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同.⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.第三章 一元一次方程3.1从算式到方程3.1.1一元一次方程①方程:含有未知数的等式②一元一次方程:只含有一个未知数,而且未知数的次数是1的方程.③方程的使方程中等号左右两边相等的未知数的值④求方程解的过程叫做解方程.⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.3.1.2等式的性质①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 3.2解一元一次方程(—)合并同类项与移项①把等式一边的某项变号后移到另一边,叫做移项. 3.3解一元一次方程(二) 去括号与去分母①一般步骤:1.去分母 2.去括号 3.移项 4. 合并同类项 5.系数化为一 3.4实际问题与一元一次方程①利用方程不仅能求具体数值,而且可以进行推理判断.第四章 图形认识初步4.1多姿多彩的图形4.1.1几何图形①把实物中抽象出的各种图形统称为。

8.七年级数学定义总结

初一数学下册知识点总结:第五章 三角形

一、三角形及其有关概念

1、三角形:

由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形的表示:

三角形用符号“ ”表示,顶点是A、B、C的三角形记作“ ABC”,读作“三角形ABC”。

3、三角形的三边关系:

(1)三角形的两边之和大于第三边。

(2)三角形的两边之差小于第三边。

(3)作用:

①判断三条已知线段能否组成三角形

②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

4、三角形的内角的关系:

(1)三角形三个内角和等于180°。

(2)直角三角形的两个锐角互余。

5、三角形的稳定性:

三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

6、三角形的分类:

(1)三角形按边分类:

不等边三角形

三角形 底和腰不相等的等腰三角形

等腰三角形

等边三角形

(2)三角形按角分类:

直角三角形(有一个角为直角的三角形)

三角形 锐角三角形(三个角都是锐角的三角形)

斜三角形

钝角三角形(有一个角为钝角的三角形)

把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

7、三角形的三种重要线段:

(1)三角形的角平分线:

定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

性质:三角形的三条角平分线交于一点。交点在三角形的内部。

(2)三角形的中线:

定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

性质:三角形的三条中线交于一点,交点在三角形的内部。

(3)三角形的高线:

定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部;

8、三角形的面积:

三角形的面积= *底*高

二、全等图形:

定义:能够完全重合的两个图形叫做全等图形。

性质:全等图形的形状和大小都相同。

三、全等三角形

1、全等三角形及有关概念:

能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

2、全等三角形的表示:

全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。

注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

3、全等三角形的性质:全等三角形的对应边相等,对应角相等。

4、三角形全等的判定:

(1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

(2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)

(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)

(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)

直角三角形全等的判定:

对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

9.数学九年级上册知识点归纳总结

1二次根式:形如式子为二次根式; 性质:是一个非负数; 2二次根式的乘除: 3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。

4海伦-秦九韶公式: ,S是三角形的面积,p为 。 1一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。

2一元二次方程的解法 配方法:将方程的一边配成完全平方式,然后两边开方; 因式分解法:左边是两个因式的乘积,右边为零。 3一元二次方程在实际问题中的应用 4韦达定理:设是方程的两个根,那么有 1:一个图形绕某一点转动一个角度的图形变换 性质:对应点到旋转中心的距离相等; 对应点与旋转中心所连的线段的夹角等于旋转角 旋转前后的图形全等。

2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称; 中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形; 3关于原点对称的点的坐标 1圆、圆心、半径、直径、圆弧、弦、半圆的定义 2垂直于弦的直径 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴; 垂直于弦的直径平分弦,并且平方弦所对的两条弧; 平分弦的直径垂直弦,并且平分弦所对的两条弧。 3弧、弦、圆心角 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

4圆周角 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; 半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。 5点和圆的位置关系 点在圆外d>r 点在圆上d=r 点在圆内d

6直线和圆的位置关系 相交dr 切线的性质定理:圆的切线垂直于过切点的半径; 切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线; 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。

7圆和圆的位置关系 外离d>R+r 外切d=R+r 相交R-r0,开口向上;a<0,开口向下; 对称轴: ; 顶点坐标: ; 图像的平移可以参照顶点的平移。

2用函数观点看一元二次方程 3二次函数与实际问题 1图形的相似 相似多边形的对应边的比值相等,对应角相等; 两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似; 相似比:相似多边形对应边的比值。 2相似三角形 判定: 平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似; 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似; 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。

3相似三角形的周长和面积 相似三角形(多边形)的周长的比等于相似比; 相似三角形(多边形)的面积的比等于相似比的平方。 4位似 位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。

1锐角三角函数:正弦、余弦、正切; 2解直角三角形 1投影:平行投影、中心投影、正投影 2三视图:俯视图、主视图、左视图。 3三视图的画法 1本单元教学的主要内容. 一元二次方程概念;解一元二次方程的方法;一元二次方程应用题. 2本单元在教材中的地位与作用. 一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法.学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程.应该说,一元二次方程是本书的重点内容. 了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题. 通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.根据数学模型恰如其分地给出一元二次方程的概念.结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.通过掌握缺一次项的一元二次方程的解法──直接开方法,导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.通过复习八年级上册《整式》的第5节因式分。

七到九年级数学的概念及知识点