关于遗传和变异的小知识
1.有关遗传与变异的资料
遗传:
遗传
遗传
(heredity)
生物亲代与子代之间、子代个体之间相似的现象。
heredity: The genetic transmission of characteristics from parent to offspring.
遗传 父母的基因特征传给子女。
遗传,一般是指亲代的性状又在下代表现的现象。但在遗传学上,指遗传物质从上代传给后代的现象。例如,父亲是色盲,女儿视觉正常,但她由父亲得到色盲基因,并有一半机会将此基因传给他的孩子,使显现色盲性状。故从性状来看,父亲有色盲性状,而女儿没有,但从基因的连续性来看,代代相传,因而认为色盲是遗传的。遗传对于优生优育是非常重要的因素之一。
为什么会出现遗传这种奥妙的现象呢?19世纪末,科学家才在人体细胞的细胞核内发现了一种形态、数目、大小恒定的物质。这种物质甚至用最精密的显微镜也观察不到,只有在细胞分裂时,通过某种特定的染色法,才能使它显形,因此取名为“染色体”。
人们发现,不同种生物的染色体数目和形态各不相同,而在同一种生物中,染色体的数目及形状则是不变的,于是有了子女像父母的遗传现象。在总数为46条的染色体中,有44条是男女都一样的,被人们称为常染色体。男性的性染色体为“ XY”,女性的性染色体为“XX”。人体染色体的数量,不管在身体哪个部位的细胞里都是成双成对的存在的,即23对46条染色体,可是惟独在生殖细胞——卵子和精子里,却只剩下23条,而当精子和卵子结合成新的生命——受精卵时,则又恢复为46条。可见在这46条染色体中肯定有23条是来自父亲,另外23条则来自母亲,也就是说,一半来自父亲,一半来自母亲,既携带有父亲的遗传信息,又携带有母亲的遗传信息。所有这些,共同控制着胎儿的特征,等到胎儿长大成人,生成精子或卵子时,染色体仍然要对半减少。如此循环往复,来自双亲的各种特征才得以一代又一代地传递,使人类代代复制着与自己相似的后代。
那么,染色体又是怎么实现遗传的呢?染色体靠的是它所携带的遗传因子,也就是“基因”,基因是贮藏遗传信息的地方,一个基因往往携带着祖辈一种或几种遗传信息,同时又决定着后代的一种或几种性状的特征。基因是一种比染色体小许多倍的微小的物质,即使在光学显微镜下也不可能看到。它们按顺序排列在染色体上。由染色体将它们带入人体细胞。每条染色体都是由上千个基因组成的。
人之初都是由一个受精卵经过不断的分裂增殖发育而成的,在这个受精卵里蕴涵着父母的无数个遗传基因。详尽设定了后代的容貌、生理、性格、体质,甚至于某种遗传病,子女就是按照这些特征发育成长的。于是就出现了孩子在某个地方像父亲,某个地方像母亲的情况。
基因有显性和隐性之分,在一对基因中只有一个是显性基因,其后代的相貌和特征就能表现出来。而隐性基因则只有当成对基因中的两个基因同时存在时,其特征才能表现出来,以人的相貌特征为例,在胚胎形成时,胎儿要分别接受父亲和母亲的同等基因,假如孩子从父亲的基因里继承了卷发,又从母亲的基因里继承了直发,但是他最后却长了一头直发,这是因为,在遗传时直发是显性,卷发是隐性,因此表现为直发。然而,在这个孩子的染色体中仍存在卷发的隐性基因,在他长大成人后,如果他的妻子和他一样,体内也存在卷发的隐性基因,那么他们的孩子就会有一头卷发,表现出隔代遗传的现象。这就是显性基因和隐性基因的区别。
基因还具有稳定性和变异性。稳定性是指基因能够自我复制,使后代基因保持祖先的样子。变异性是说基因在某种因素的刺激下能够发生变化。如日本人在20世纪40年代一般因遗传缘故,个子较矮小,到60年代之后,日本人注意营养,每日喝奶,又加强锻炼,其后代个子普遍增高,这就是遗传基因向好的方向变异。
2.关于最新的遗传与变异的资料
遗传与变异,是生物界不断地普遍发生的现象,也是物种形成和生物进化的基础。
微生物遗传学作为一门独立的学科诞生于40年代,病毒遗传学作为微生物遗传学的重 要组成部分,对于生物遗传和变异的研究起到了重要的促进作用,也为分子遗传学的 发展奠定了基础。病毒的许多生物学特性,包括结构简单、无性增殖方式、可经细胞 培养、增殖迅速、便于纯化等,使其具有作为遗传学研究材料的独特优势。
众所周知,包括病毒在内的各种生物遗传的物质基础是核酸。事实上,这一结论 最初的直接证据正是来自于对病毒的研究。
为了说明这一点,首先让我们回顾两个经 典的实验:①噬菌体感染试验:T2是感染大肠杆菌的一种噬菌体,它由蛋白质外壳( 约60%)和DNA核芯(约40%)构成,蛋白质中含有硫,DNA中含有磷。把?3?2P和?3?5S 标记T2, 并用标记的噬菌体进行感染试验,就可以分别测定DNA和蛋白质的功用。
Hershey和 Chase(1952)在含有?3?2P或?3?5S的培养液中将T2感染大肠杆菌,得到标记的噬菌体, 然 后用标记的噬菌体感染常规培养的大肠杆菌,再测定宿主细胞的同位素标记,结果用 ?3?5S标记的噬菌体感染时,宿主细胞中很少有同位素标记,大多数的?3?5S标记噬菌 体蛋 白附着在宿主细胞的外面,用?3?2P标记的噬菌体感染时,大多数的放射性标记在宿主细 胞内。显然感染过程中进入细胞的主要是DNA。
②病毒重建实验:烟草花叶病病毒 (tobacco mosaic virus,TMV)由蛋白质外壳和RNA核芯组成。可以从TMV分别抽提得 到它的蛋白质部分和RNA部分。
Fraenkel?Courat(1956)实验证明,用这两种成分分 别接种烟草,只有病毒RNA可引起感染。虽然感染效率较低,但足以说明遗传物质为 RNA。
Fraenkel?Courat利用分离后再聚合的方法,先取得TMV的蛋白质外壳和车前病 毒(Holmes Rib Grass Virus,HRV)的RNA,然后把它们结合起来形成杂合病毒,这种 杂合病毒有着普通TMV的外壳,可被抗TMV抗体所灭活,但不受抗HRV抗体的影响。当 用杂合病毒感染烟草时,却产生HRV感染的特有病斑,从中分离的病毒可被抗HRV抗体 灭活。
反过来将HRV的蛋白质和TMV的RNA结合起来也得到类似的结果。目前已经能够由 许多小型RNA病毒和某些DNA病毒提取感染性核酸。
如第四章所述,这些感染性核酸在 感染细胞以后,可以产生具有蛋白质衣壳和脂质囊膜的完整子代病毒。由脊髓灰质炎 病毒的RNA与柯萨奇病毒的衣壳构成的杂合病毒,在感染细胞后产生的子代病毒将是完 全的脊髓灰质炎病毒。
以上事实说明,核酸是病毒遗传的决定机构,而蛋白质衣壳和 脂质囊膜不过是在病毒核酸遗传信息控制下合成或由细胞“抢来”的成分。这些成分 虽然决定着病毒的抗原特性,而且与病毒对细胞的吸附有关,在一定程度上影响着病 毒与宿主细胞或机体的相互关系,例如感染与免疫,但从病毒生物学的本质来看,它 们只是病毒粒子中附属的或辅助的结构。
核酸传递遗传信息的基础在于其碱基的排列 顺序,病毒核酸复制时能够产生完全同于原核酸的新的核酸分子,从而保持遗传的稳 定性。但是,病毒没有细胞结构,缺乏独立的酶系统,故其遗传机构所受周围环境的 影响,尤其是宿主细胞内环境的影响特别深刻;加之病毒增殖迅速,突变的机率相应 增高,这又决定了病毒遗传的较大的动摇性——变异性。
采用适当的选育手段,常可 较快获得许多变异株。应用各种理化学和生物学因子进行诱变,也能较快看到结果。
而病毒粒子之间以及病毒核酸之间的杂交或重组,又为病毒遗传变异的研究,开辟了 广阔前景。这些便利条件使病毒遗传变异的研究远远超出了病毒学本身的范围,成为 人类认识生命本质和规律的一个重要的模型和侧面。
遗传和变异是对立的统一体,遗传使物种得以延续,变异则使物种不断进化。本 章主要论述病毒的变异现象、变异机理以及研究变异的方法和诱变因素等,关于病毒 的遗传学理论请参阅有关的专业书籍。
病毒的遗传变异常常是“群体”,也就是无数病毒粒子的共同表现。而病毒成分, 特别是病毒编码的酶和蛋白质,又常与细胞的正常酶类和蛋白质混杂在一起。
这显然 增加了病毒遗传变异特性鉴定上的复杂性。? 变异是生物的一般特性。
甚至在人类尚未发现病毒以前,就已开始运用变异现象 制造疫苗。例如1884年,巴斯德利用兔脑内连续传代的方法,将狂犬病的街毒(强毒) 转变为固定毒。
这种固定毒保留了原有的免疫原性,但毒力发生了变异——非脑内接 种时,对人和犬等的毒力明显降低,因而成功地用作狂犬病的预防制剂。此后,在许 多动物病毒方面,应用相同或类似的方法获得了弱毒株,创制了许多优质的疫苗。
选 育自然弱毒变异株的工作,也取得了巨大成就。但是有关病毒遗传变异机理的认识, 则只在最近几十年来才有显著的进展。
这不仅是病毒学本身的跃进,也是其它学科, 特别是生物化学、分子生物学、免疫学以及电子显微镜、同位素标记等新技术飞速发 展的结果。?。
3.关于"遗传""变异"的资料
智慧教育之四:探索人类智慧的进化人类的文明与文化进化,是播种智慧的土地,是养育智慧的江河,是构筑智慧的基石,是创造智慧的源泉。
第一节 生物遗传与生物进化没有生物的遗传,就没有生物的进化,也就不可能有人类智慧的遗传与进化。DNA的指令进化,是对环境所产生的“超突变”效应,产生极大数量的模型,来试图完成与外来病毒的楔合作用。
而这些过程仅仅发生在“信息层”的作用,从未到达抗体的“制造层”。一、基本概念分子生物学:是从分子水平研究生物分子的结构与功能从而阐明生命现象本质的科学。
分子:是指物质的单元,能够保持与原物质化学一致性的元素的最小粒子或原子的化学结合的最小粒子。分子分为生物分子与非生物分子,生物分子是由非生物分子构成的,它已经具有生命。
遗传是人类机体结构、功能进化的基础,也是人类智慧进化的基础。遗传学:是研究生物体遗传和变异规律的科学研究,范围包括遗传物质本质、遗传物质的传递和遗传信息的实现3个方面。
⑴遗传物质本质包括:它的化学本质、它所包含的遗传信息、它的结构、组织和变化等。⑵遗传物质传递包括:遗传物质的复制、染色体的行为、遗传规律和基因在群体中的数量变迁等。
⑶遗传信息实现包括:基因的原初功能、基因的相互作用、基因作用的调控以及个体发育中的基因的作用机制等。遗传物质:本质是染色体,人类的染色体有46条,大小约为1~2微米,DNA是染色体的主要成份。
遗传物质的传递是通过DNA、RNA的复制来实现的,遗传信息是DNA的信息与程序。二、分子生物与人类进化在生物的基因中,记录了整个生物进化的过程,如果我们能够解读基因,我们就可以搞清楚生物进化的所有历史。
而基因中蕴含的文化,就是基因文化;基因中蕴含的生物改造自身、创造自身的智慧,就是基因智慧。在人类进化之中,智慧对于进化发挥着主导作用:从人类的基因中,我们可以解读到基因文化和基因智慧;从生物分子中,我们能够看到分子智能;从生物细胞中,我们能够看到细胞智能;从生物组织中,我们能够看到组织智能;从生物器官中,我们能够看到器官智能。
如果说,人类进化的早期,是一个智慧形成的进化过程,那么,当这个智慧形成之后,人类的进化就进入到在智慧引导与控制下的智慧进化时期。它包括:⑴人体自身进化——功能、结构、进化机制的进化;⑵人类文化进化——文化、科技、物质文明、知识、观念、智慧的进化。
在智慧进化过程中,智慧程序产生了一系列的转化,包括:程序的自形成、程序的自重组、程序的自组织、程序的自进化、程序的自控制。正是由于它们的形成,而导致了智慧程序的自形成、自重组、自组织、自进化、自控制进化。
生物学意义的“进化”:是指生命是由非生命的物质产生的,然后,完全按照自然方法发展这样一个过程。生命是一种分子现象,生物分子是构成生命体的、具有生命的最小单位。
奇妙的生物分子极为复杂,它是一种有机分子,并且具有生物分子智能。现在我们还不知道,为什么生物分子就具有了生命现象,它与非生物分子到底有什么区别?生物分子进化与非生物分子进化又有什么不同?生物分子智能又是怎么一回事呢?人类胚胎发育过程中,存在着细胞“突变”。
我们知道,人是由一个受精卵发育而形成的,受精卵只是一个细胞,而胎儿却有许多种细胞。那么,应该说,胎儿是由一个受精卵“突变”而来的了?原来根本不是那么一回事。
受精卵携带着人类的遗传基因——DNA,它是由一系列的程序构成的,携带着构成人体所有不同类型细胞的全部信息。这个程序,将按照它原有的时间顺序、构成方式,逐步完成胎儿的发育。
受精卵为胎儿的形成,提供遗传信息、提供复制各种细胞的场所。所以说,人类胚胎发育过程,绝不是细胞“突变”,而是一个遗传信息程序执行过程。
生物体内有许多高智能的器官,比如:⑴分子器官——构成了细胞内物资运输的高速公路、运输线、构成了各种生命过程的生命开关;⑵太阳能器官—— 具有光合作用的器官;⑶电子器官——神经系统的器官。这些高智能的器官,执行着各自不同的功能,它们要比现有的最为复杂、功能最为精密的人工智能仪器,还要高级的多。
三、生物遗传与智慧遗传生物遗传:是指通过细胞染色体由祖先向后代传递的品质。生物遗传不但给了我们一个完整的身体,同时也给了我们一个完整的智能结构,这就是大脑。
生物遗传是由遗传基因DNA所携带的遗传信息来完成的,DNA中即包括了构成人体结构、生理功能的信息,也包括了构成智慧的信息。智慧遗传:我们知道,人体的生理功能是不受人的意识控制的,属于潜意识的那部分,而人的遗传智慧也深藏在潜意识里,它必须由后天的学习和社会实践来开发,才能进入我们的显意识层次,并被我们所感知。
意识:是指人的头脑对于客观物质世界的反映,是感觉、思维等各种心理过程的总和。人类的遗传使我们具有了这种潜在智能,其中最重要的一种智能是:“能够识别和学习人类自己所创造的信息体系的智能,人类的信息体系包括语言、文字、符号、图形等。”
这就是说,我们。
4.请介绍一下生物的变异和遗传方面的知识.谢谢
生物体性状的相对稳定——遗传和变异 在生物的繁殖过程中有一个引人注目的现象,即同种生物世代之间性状上的相对稳定。
种瓜得瓜,种豆得豆。这就是生物的遗传。
在生物的繁殖过程中还有另一个引人注目的现象,即同种生物世代之间或同代不同个体之间的性状不会完全相同。例如,同一个稻穗上的籽粒,长成的植株在性状上也有或多或少的差异;甚至一卵双生的兄弟也不可能一模一样,这种差异是表现,就是生物的变异。
遗传和变异是生命活动中的一对矛盾,既对立又统一。遗传是相对的、保守的;而变异则是绝对的、发展的。
没有遗传,不可能保持物种的相对稳定;没有变异,也就不可能有新的物种的形成,不可能有今天这样一个丰富多彩、形形色色的生物界。 由于遗传物质的改变所引起的变异是遗传的;由于环境条件的改变所引起的变异,一般只表现于当代,不能遗传下去。
也就是说,变异可分为两大类:遗传的变异和不遗传的变异。这里要强调指出,这两类变异的划分是相对的。
因为在一定的环境条件下通过长期定向的影响和选择,由量变的积累可以转化为质变,不遗传的变异就有可能形成为遗传的变异。 生物性状的遗传,以生殖细胞作为桥梁。
即在配子形成过程中的减数分裂后,当配子形成合子时,又恢复了亲代体细胞染色体的数目和内容。而DNA恰是染色体重要的成分,所以,染色体是DNA的主要载体,基因是有遗传效应的DAN片段。
遗传物质的变化发展规律,直接关系到生命物质运动中的稳定和不稳定。遗传物质的稳定传递,使生物表现出遗传,这关系到生物种族的稳定发展;遗传物质的不稳定传递,使生物表现出变异,这关系到生物种族的向前发展进化。
这充分体现了生命物质(主要是核酸、蛋白质)运动和变化发展的一些重要规律。 遗传物质的主要载体——染色体 染色体在细胞的有丝分裂、减数分裂和受精过程中能够保持一定的稳定性和连续性。
这是最早观察到的染色体与遗传有关的现象。染色体的主要成分是 DNA和蛋白质。
染色体是遗传物质的主要载体,因为绝大部分的遗传物质(DNA)是在染色体上的。也有少量的DNA在线粒体和叶绿体中,所以线粒体和叶绿体被称为遗传物质的次要载体。
在遗传学研究和育种实践中,根据生物性状在群体(自然群体或杂交后代群体)内的遗传变异规律,将其划分为质量性状和数量性状两大类。 凡不易受环境条件的影响、在一个群体内表现为不连续性变异的性状称为质量性状(qualitative character),例如孟德尔所研究的豌豆子粒的形状(圆满与皱缩)、子叶的颜色(黄色与绿色)、花的颜色(红色与白色)等等。
质量性状是受一个或少数几个效应大的基因(称为主基因)决定的,受环境影响较小,所以呈现非连续变异的、因而能对群体内的各个体进行明确分类的性状。豌豆的花色、动物的性别、人类的各种血型系统等都属于这类性状。
在遗传研究中,由于质量性状容易跟踪,也常把它作为标记性状。 凡容易受环境条件的影响、在一个群体内表现为连续性变异的性状称为数量性状(quantitative character),又称为计量性状(metrical character)。
在生物界中,与质量性状相比,数量性状的存在更普遍、更广泛;农作物的大部分农艺性状都是数量性状,例如植物籽粒产量或营养体的产量、株高、成熟期、种子粒 重、蛋白质和油脂含量、甚至是抗病性和抗虫性等. 由于质量性状表现为不连续性变异,对于杂交后代的分离群体,能够用孟德尔所采用的研究方法,根据所具相对性状的差异,将各个体明确地分组归类,可以求出各 类型间所包含个体数目的比例关系,并可用文字形容和描述各类型的特征。 由于数量性状在自然群体或杂交后代的分离群体内,不同个体间表现为连续性变异,各个体不能用孟德尔方法作出明确的分组归类,不能用分析质量性状的方法来分析数量性状,而是采用生物统计学的方法对性状的遗传变异作定量的描述,对性状的遗传动态进行研究。
然而质量性状和数量性状的划分不是绝对的,例如: 对于同一种作物的同一性状,在不同亲本材料的杂交组合中可能表现不同,例如水稻和小麦等的株高。 有些性状在主基因遗传的基础上,还存在一组微效基因—修饰基因,例如小麦和水稻种皮的红(深红或紫黑)色与白色,在一些杂交组合中表现为一对基因的分离,而在另外的一些杂交组合中,F2的子粒颜色呈不同程度的红色而成为连续性变异,即表现出数量性状变异的特征。
在实际应用中,凡是容易受环境条件影响的性状,都可以用研究数量性状的方法去作遗传分析。 数量性状一般容易受环境条件的影响而发生变异,而这种变异是不能遗传的。
由于环境条件的影响,即使是基因型纯合一致的两个亲本(P1和P2)和基因型杂合一致的杂种一代(F1),各个个体也呈现出连续性变异,而不是一种基因型只有一个值;这种同一基因型群体内个体间的变异是由环境条件造成的,是不能遗传的。对于F2代群体,既有由于基因分离所造成的个体间基因型差异所导致的表现型变异,又有由于环境条件的影响所造成的同一基因型的表现型差异;前一种变异是可遗传的变异,后一种变异是不。
5.最新的生物遗传和变异的资料
生物谷 前沿生物科技发展 定义生物有机体的属性之一,它表现为亲代与子代之间的差别。
变异有两类,即可遗传的变异与不遗传的变异。现代遗传学表明,不遗传的变异与进化无关,与进化有关的是可遗传的变异,后一变异是由于遗传物质的改变所致,其方式有突变与重组。
生物突变 可分为基因突变与染色体畸变。基因突变是指染色体某一位点上发生的改变,又称点突变。
发生在生殖细胞中的基因突变所产生的子代将出现遗传性改变。发生在体细胞的基因突变,只在体细胞上发生效应,而在有性生殖的有机体中不会造成遗传后果。
染色体畸变包括染色体数目的变化和染色体结构的改变,前者的后果是形成多倍体,后者有缺失、重复、倒立和易位等方式。突变在自然状态下可以产生,也可以人为地实现。
前者称为自发突变,后者称为诱发突变。自发突变通常频率很低,每10万个或 1亿个生殖细胞在每一世代才发生一次基因突变。
诱发突变是指用诱变剂所产生的人工突变。诱发突变实验始于1927年,美国遗传学家H.J.马勒用X射线处理果蝇精子,获得比自发突变高9~15倍的突变率。
此后,除 X射线外,γ射线、中子流及其他高能射线,5-嗅尿嘧啶、2-氨基嘌呤、亚硝酸等化学物质,以及超高温、超低温,都可被用作诱变剂,以提高突变率。突变的分子基础是核酸分子的变化。
基因突变只是一对或几对碱基发生变化。其形式有碱基对的置换,如DNA 分子中A-T碱基对变为T-A碱基对;另一种形式是移码突变。
由于 DNA分子中一个或少数几个核苷酸的增加或缺失,使突变之后的全部遗传密码发生位移,变为不是原有的密码子,结果改变了基因的信息成分,最终影响到有机体的表现型。同样,染色体畸变也在分子水平上得到说明。
自发突变频率低的原因是由于生物机体内存在比较完善的修复系统。修复系统有多种形式,如光修复、切补修复、重组修复以及 SOS修复等。
修复是有条件的,同时也并非每个机体都存在这些修复系统。修复系统的存在有利于保持遗传物质的稳定性,提高信息传递的精确度。
基因重组 重组也是变异的一个重要来源。G.J.孟德尔的遗传定律重新被发现之后,人们逐步认识到二倍体生物体型变异很大一部分来源于遗传因子的重组。
以后对噬菌体与原核生物的大量研究表明,重组也是原核生物变异的一个重要来源。其方式有细胞接合、转化、转导及溶原转变等。
它们的共同特点是受体细胞通过特定的过程将供体细胞的 DNA片段整合到自己的基因组上,从而获得供体细胞的部分遗传特性。20世纪70年代以来,借助于 DNA重组即遗传工程技术,可以用人工方法有计划地把人们所需要的某一供体生物的 DNA取出,在离体条件下切割后,并入载体 DNA分子,然后导入受体细胞,使来自供体的 DNA在其中正常复制与表达,从而获得具有新遗传特性的个体。
对变异认识的历史考察 人类今天对生物变异现象及其内在机制的认识,是长期发展的结果。生物机体存在变异,在中国先秦时期的典籍中就有不少记载。
《庄子》一书中曾提到“种有几”。北魏时期的贾思勰观察到栽培中的大蒜与芜菁的变异,但原因不明。
他说:“大蒜瓣变小,芜菁根变大,二事相反,其理难明”(《齐民要术·种蒜》)。明朝的张谦德在其《朱砂鱼谱》中不仅看到家养金鱼的大量变异,而且提出一套通过人工选择培育新品种的方法,即:“蓄类贵广,而选择贵精”,日积月累,“自然奇品悉备”。
这些都是零星的观察。19世纪英国生物学家C.R.达尔文系统地考察过生物的变异,指出变异是生物普遍存在的共同特征。
他对变异的类型、变异的规律以及变异与进化的关系都有系统的论述。但由于受当时自然科学条件的限制,他并未了解变异的具体原因。
他自己也承认对每一对每一特殊变异的原因是茫然无知的。20世纪以来遗传学的发展,才使人们对变异有了更深刻的理解。
哲学意义 人类对生物变异的认识史,也是人类干预自然、改变自然的历史。遗传工程技术的兴起,使人类拥有改造自然的新手段,开创了直接操作遗传物质、改造旧生物和创造新生物的时代,从而使定向改造生物成为现实。
分子生物学表明,碱基对变化所引起的突变是随机的、偶然的,突变的结果与突变的原因之间不相对应。有人由此作出哲学结论说,进化的根基是纯粹偶然的。
科学发展证明,进化是一个复杂的过程。它不仅在不同的环境下以不同的方式发生,而且是多层次结构下各种规律相互作用的结果。
突变只为进化提供基础,点突变的随机性是否与整个系统相协调,还得由生物机体的调节装置加以检验,而且“热点”的存在也表明突变不完全是随机的。突变型发生后进入群体,又受到群体生理规律的制约,在生态范围内最后由自然选择决定取舍。
经过这种多层次的相互制约,不确定的偶然变异便纳入一定方向。这一过程体现着偶然性与必然性的辩证法。
6.关于"遗传""变异"的资料
智慧教育之四:探索人类智慧的进化人类的文明与文化进化,是播种智慧的土地,是养育智慧的江河,是构筑智慧的基石,是创造智慧的源泉。
第一节 生物遗传与生物进化没有生物的遗传,就没有生物的进化,也就不可能有人类智慧的遗传与进化。DNA的指令进化,是对环境所产生的“超突变”效应,产生极大数量的模型,来试图完成与外来病毒的楔合作用。
而这些过程仅仅发生在“信息层”的作用,从未到达抗体的“制造层”。一、基本概念分子生物学:是从分子水平研究生物分子的结构与功能从而阐明生命现象本质的科学。
分子:是指物质的单元,能够保持与原物质化学一致性的元素的最小粒子或原子的化学结合的最小粒子。分子分为生物分子与非生物分子,生物分子是由非生物分子构成的,它已经具有生命。
遗传是人类机体结构、功能进化的基础,也是人类智慧进化的基础。遗传学:是研究生物体遗传和变异规律的科学研究,范围包括遗传物质本质、遗传物质的传递和遗传信息的实现3个方面。
⑴遗传物质本质包括:它的化学本质、它所包含的遗传信息、它的结构、组织和变化等。⑵遗传物质传递包括:遗传物质的复制、染色体的行为、遗传规律和基因在群体中的数量变迁等。
⑶遗传信息实现包括:基因的原初功能、基因的相互作用、基因作用的调控以及个体发育中的基因的作用机制等。遗传物质:本质是染色体,人类的染色体有46条,大小约为1~2微米,DNA是染色体的主要成份。
遗传物质的传递是通过DNA、RNA的复制来实现的,遗传信息是DNA的信息与程序。二、分子生物与人类进化在生物的基因中,记录了整个生物进化的过程,如果我们能够解读基因,我们就可以搞清楚生物进化的所有历史。
而基因中蕴含的文化,就是基因文化;基因中蕴含的生物改造自身、创造自身的智慧,就是基因智慧。在人类进化之中,智慧对于进化发挥着主导作用:从人类的基因中,我们可以解读到基因文化和基因智慧;从生物分子中,我们能够看到分子智能;从生物细胞中,我们能够看到细胞智能;从生物组织中,我们能够看到组织智能;从生物器官中,我们能够看到器官智能。
如果说,人类进化的早期,是一个智慧形成的进化过程,那么,当这个智慧形成之后,人类的进化就进入到在智慧引导与控制下的智慧进化时期。它包括:⑴人体自身进化——功能、结构、进化机制的进化;⑵人类文化进化——文化、科技、物质文明、知识、观念、智慧的进化。
在智慧进化过程中,智慧程序产生了一系列的转化,包括:程序的自形成、程序的自重组、程序的自组织、程序的自进化、程序的自控制。正是由于它们的形成,而导致了智慧程序的自形成、自重组、自组织、自进化、自控制进化。
生物学意义的“进化”:是指生命是由非生命的物质产生的,然后,完全按照自然方法发展这样一个过程。生命是一种分子现象,生物分子是构成生命体的、具有生命的最小单位。
奇妙的生物分子极为复杂,它是一种有机分子,并且具有生物分子智能。现在我们还不知道,为什么生物分子就具有了生命现象,它与非生物分子到底有什么区别?生物分子进化与非生物分子进化又有什么不同?生物分子智能又是怎么一回事呢?人类胚胎发育过程中,存在着细胞“突变”。
我们知道,人是由一个受精卵发育而形成的,受精卵只是一个细胞,而胎儿却有许多种细胞。那么,应该说,胎儿是由一个受精卵“突变”而来的了?原来根本不是那么一回事。
受精卵携带着人类的遗传基因——DNA,它是由一系列的程序构成的,携带着构成人体所有不同类型细胞的全部信息。这个程序,将按照它原有的时间顺序、构成方式,逐步完成胎儿的发育。
受精卵为胎儿的形成,提供遗传信息、提供复制各种细胞的场所。所以说,人类胚胎发育过程,绝不是细胞“突变”,而是一个遗传信息程序执行过程。
生物体内有许多高智能的器官,比如:⑴分子器官——构成了细胞内物资运输的高速公路、运输线、构成了各种生命过程的生命开关;⑵太阳能器官—— 具有光合作用的器官;⑶电子器官——神经系统的器官。这些高智能的器官,执行着各自不同的功能,它们要比现有的最为复杂、功能最为精密的人工智能仪器,还要高级的多。
三、生物遗传与智慧遗传生物遗传:是指通过细胞染色体由祖先向后代传递的品质。生物遗传不但给了我们一个完整的身体,同时也给了我们一个完整的智能结构,这就是大脑。
生物遗传是由遗传基因DNA所携带的遗传信息来完成的,DNA中即包括了构成人体结构、生理功能的信息,也包括了构成智慧的信息。智慧遗传:我们知道,人体的生理功能是不受人的意识控制的,属于潜意识的那部分,而人的遗传智慧也深藏在潜意识里,它必须由后天的学习和社会实践来开发,才能进入我们的显意识层次,并被我们所感知。
意识:是指人的头脑对于客观物质世界的反映,是感觉、思维等各种心理过程的总和。人类的遗传使我们具有了这种潜在智能,其中最重要的一种智能是:“能够识别和学习人类自己所创造的信息体系的智能,人类的信息体系包括语言、文字、符号、图形等。”
这就是。
7.生物遗传与变异的资料
遗传和变异是生物的基本特征之一。遗传通常指在传种接代过程中亲子代之间性状表现相似的现象。在遗传学中,遗传是指遗传物质的世代相传,亲代性状通过遗传物质传给子代的能力,称为遗传性。
变异一般指亲子代之间及其子代个体之间的性状差异。由遗传物质改变引起的性状变异,能够遗传给后代。生物体产生性状变异的能力,称为变异性。
生物的亲代能产生与自己相似的后代的现象叫做遗传。遗传物质的基础是脱氧核糖核酸(DNA),亲代将自己的遗传物质DNA传递给子代,
而且遗传的性状和物种保持相对的稳定性。生命之所以能够一代一代地延续的原因,主要是由于遗传物质在生物进程之中得以代代相承,从而使后代具有与前代相近的性状。
扩展资料:
遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。
遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。因此,亲代的外貌、以及优良性状很有可能在子代重现,甚至酷似亲代。而亲代的缺陷和遗传病,同样也可能传递给子代。
遗传是一切生物的基本属性,它使生物界保持相对稳定,使人类可以识别包括自己在内的生物界。变异是指亲子代之间,同胞兄弟姊妹之间,以及同种个体之间的差异现象。俗语说“一母生九子,九子各异”。世界上没有两个绝对相同的个体,包括挛生同胞在内,这充分说明了遗传的稳定性是相对的,而变异是绝对的。
参考资料:百度百科-遗传变异