圆与椭圆的知识点

bdqnwqk1年前学者8

1.谁有椭圆知识总结

椭圆知识点总结

1. 椭圆的定义:1,2

(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。

2. 椭圆的几何性质:

(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线; ⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。⑥通径

2.点与椭圆的位置关系:(1)点在椭圆外;

(2)点在椭圆上=1;

(3)点在椭圆内

3.直线与圆锥曲线的位置关系:

(1)相交:直线与椭圆相交;(2)相切:直线与椭圆相切; (3)相离:直线与椭圆相离;

如:直线y―kx―1=0与椭圆恒有公共点,则m的取值范围是_______(答:[1,5)∪(5,+∞));

4、焦半径(圆锥曲线上的点P到焦点F的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径,其中表示P到与F所对应的准线的距离。

如(1)已知椭圆上一点P到椭圆左焦点的距离为3,则点P到右准线的距离为____(答:10/3);

(2)椭圆内有一点,F为右焦点,在椭圆上有一点M,使 之值最小,则点M的坐标为_______(答:);

5、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:,当即为短轴端点时,的最大值为bc;

6、弦长公式:若直线与圆锥曲线相交于两点A、B,且分别为A、B的横坐标,则=,若分别为A、B的纵坐标,则=,若弦AB所在直线方程设为,则=。特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。

7、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以为中点的弦所在直线的斜率k=-;

如(1)如果椭圆弦被点A(4,2)平分,那么这条弦所在的直线方程是 (答:);(2)已知直线y=-x+1与椭圆相交于A、B两点,且线段AB的中点在直线L:x-2y=0上,则此椭圆的离心率为_______(答:);(3)试确定m的取值范围,使得椭圆上有不同的两点关于直线对称(答:);

特别提醒:因为是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验!

2.高中椭圆定理总结大全

高中椭圆定理总结:抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

(二)椭圆面积计算公式 椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。

常数为体,公式为用。 椭圆形物体 体积计算公式椭圆 的 长半径*短半径*PAI*高。

3.谁有椭圆知识总结

椭圆知识点总结 1. 椭圆的定义:1,2 (1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。

方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。 2. 椭圆的几何性质: (1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线; ⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。

⑥通径 2.点与椭圆的位置关系:(1)点在椭圆外; (2)点在椭圆上=1; (3)点在椭圆内 3.直线与圆锥曲线的位置关系: (1)相交:直线与椭圆相交;(2)相切:直线与椭圆相切; (3)相离:直线与椭圆相离; 如:直线y―kx―1=0与椭圆恒有公共点,则m的取值范围是_______(答:[1,5)∪(5,+∞)); 4、焦半径(圆锥曲线上的点P到焦点F的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径,其中表示P到与F所对应的准线的距离。 如(1)已知椭圆上一点P到椭圆左焦点的距离为3,则点P到右准线的距离为____(答:10/3);(2)椭圆内有一点,F为右焦点,在椭圆上有一点M,使 之值最小,则点M的坐标为_______(答:); 5、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:,当即为短轴端点时,的最大值为bc; 6、弦长公式:若直线与圆锥曲线相交于两点A、B,且分别为A、B的横坐标,则=,若分别为A、B的纵坐标,则=,若弦AB所在直线方程设为,则=。

特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。 7、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。

在椭圆中,以为中点的弦所在直线的斜率k=-; 如(1)如果椭圆弦被点A(4,2)平分,那么这条弦所在的直线方程是 (答:);(2)已知直线y=-x+1与椭圆相交于A、B两点,且线段AB的中点在直线L:x-2y=0上,则此椭圆的离心率为_______(答:);(3)试确定m的取值范围,使得椭圆上有不同的两点关于直线对称(答:); 特别提醒:因为是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验。

4.椭圆基本公式

情况一:焦点在x轴上的

椭圆基本公式 x2/a+ y2/b=1 (a>b>0)

(注:是x的平方和y的平方)

焦点坐标 F1(-C,0) F2(C,0)

对称轴 以坐标轴为对称轴,以原点为对称中心

定点坐标 A1(-a,0) A2(a,0)

B1(0,b) B2(0,-b)

长轴 2a

短轴 2b

范围 -a≤x≤a -b≤y≤b

离心率 e=c/a (0<e<1) e越大,椭圆越扁

准线方程 y=±a2/c (注:是a的平方)

情况二:焦点在y轴上的

椭圆基本公式 y2/a+ x2/b=1 (a>b>0)

(注:是x的平方和y的平方)

焦点坐标 F1(0, -C) F2(0, C)

对称轴 以坐标轴为对称轴,以原点为对称中心

定点坐标 A1(0, -a) A2(0, a)

B2(b,0) B1(-b,0)

长轴 2a

短轴 2b

范围 -a≤y≤a -b≤x≤b

离心率 e=c/a (0<e<1) e越大,椭圆越扁

准线方程 x=±a2/c (注:是a的平方)

圆与椭圆的知识点

标签: 知识点椭圆