有理数知识导图
1.初一数学上册知识点,思维导图急用
1.2数值:1.在数轴上,表示互为相反数(0除外)的两个点,位于原点的两侧,并且到原点的距离相等。
1.3绝对值:1.一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0.互为相反数的两个数的绝对值相等。
1.4有理数的大小比较:1.在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于0,负数都小于0,正数大于负数.。
2.两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的反而小。
2.初中数学知识导图
网络图就没有了,知识点可以不?好多的知识点…还是要慢慢的一点一点的啃啊,当初我就是这样啃过来的~~初中数学概念及定义总结:三角形三条边的关系 定理:三角形两边的和大于第三边 推论:三角形两边的差小于第三边 三角形内角和 三角形内角和定理 三角形三个内角的和等于180° 推论1 直角三角形的两个锐角互余 推论2 三角形的一个外角等于和它不相邻的两个内角和 推论3 三角形的一个外角大雨任何一个和它不相邻的内角 角的平分线 性质定理 在角的平分线上的点到这个角的两边的距离相等 判定定理 到一个角的两边的距离相等的点,在这个角的平分线上 等腰三角形的性质 等腰三角形的性质定理 等腰三角形的两底角相等 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 推论2 等边三角形的各角都相等,并且每一个角等于60° 等腰三角形的判定 判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等 推论1 三个角都相等的三角形是等边三角形 推论2 有一个角等于60°的等腰三角形是等边三角形 推论3 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 线段的垂直平分线 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 轴对称和轴对称图形 定理1 关于某条之间对称的两个图形是全等形 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 定理3 两个图形关于某直线对称,若它们的对应线段或延长线相交,那么交点在对称轴上 逆定理 若两个图形的对应点连线被同一条直线垂直平分,那这两个图形关于这条直线对称 勾股定理 勾股定理 直角三角形两直角边a、b的平方和,等于斜边c的平方,即 a2 + b2 = c2 勾股定理的逆定理 勾股定理的逆定理 如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形 四边形 定理 任意四边形的内角和等于360° 多边形内角和 定理 多边形内角和定理n边形的内角的和等于(n - 2)·180° 推论 任意多边形的外角和等于360° 平行四边形及其性质 性质定理1 平行四边形的对角相等 性质定理2 平行四边形的对边相等 推论 夹在两条平行线间的平行线段相等 性质定理3 平行四边形的对角线互相平分 平行四边形的判定 判定定理1 两组对边分别平行的四边形是平行四边形 判定定理2 两组对角分别相等的四边形是平行四边形 判定定理3 两组对边分别相等的四边形是平行四边形 判定定理4 对角线互相平分的四边形是平行四边形 判定定理5 一组对边平行且相等的四边形是平行四边形 矩形 性质定理1 矩形的四个角都是直角 性质定理2 矩形的对角线相等 推论 直角三角形斜边上的中线等于斜边的一半 判定定理1 有三个角是直角的四边形是矩形 判定定理2 对角线相等的平行四边形是矩形 菱形 性质定理1 菱形的四条边都相等 性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 判定定理1 四边都相等的四边形是菱形 判定定理2 对角线互相垂直的平行四边形是菱形 正方形 性质定理1 正方形的四个角都是直角,四条边都相等 性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 中心对称和中心对称图形 定理1 关于中心对称的两个图形是全等形 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 梯形 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 三角形、梯形中位线 三角形中位线定理 三角形的中位线平行与第三边,并且等于它的一半 梯形中位线定理 梯形的中位线平行与两底,并且等于两底和的一半 比例线段 1、比例的基本性质 如果a∶b=c∶d,那么ad=bc 2、合比性质 3、等比性质 平行线分线段成比例定理 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 推论 平行与三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行与三角形的第三边 垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 推论1 (1) 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 (2) 弦的垂直平分线过圆心,并且平分弦所对的两条弧 (3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平分弦所夹的弧相等 圆心角、弧、弦、弦心距之间的关系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等 圆周角 定理 一条弧所对的圆周角等于它所对的圆心角的一半 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 推论2 半圆(或直径)所对的圆周角是直角;。
3.数学思维导图,怎么画
数学思维导图的构建模式,都是先确定一个中心主题,引出子主题,对子主题再分层次即可。
具体操作步骤如下。1、用最简洁的语言确定要画的数学主题。
以“角的度量”为例。如下图所示。
2、角是从一点引出两条射线所组成的图形。所以先了解射线。
如下图所示。3、由射线引出线段和直线,比较三者之间的异同。
如下图所示。4、把关于角的重要知识点,在思维导图上把关键词标注出来即可。
如下图所示。注意事项:上述思维导图里,由角引出了射线的定义角和射线之间,画一条关系线,方便我们把知识点串联起来即可。
4.画出集合的知识导图
数学符号的发明及使用比数字要晚,但其数量却超过了数字。现在常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。
数学符号有太多比一一例举,比如有:
1、运算符号
如加号(+),减号(-),乘号(*或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
2、关系符号
如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>;”是大于符号,“<;”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于),“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系),“∈”是属于符号,“⊆”是包含于符号,“⊇”是包含符号,“|”表示“能整除”(例如a|b 表示“a能整除b”,而||b表示r是a恰能整除b的最大幂次),x,y等任何字母都可以代表未知数。
3、结合符号
如小括号“()”,中括号“[ ]”,大括号“{ }”,横线“—”
4、性质符号
如正号“+”,负号“-”,正负号等。
5、省略符号
如三角形(△),直角三角形(Rt△),正弦(sin)(见三角函数),双曲正弦函数(sinh),x的函数(f(x)),极限(lim),角(∠),∵ 因为,∴ 所以等等。
6、排列组合符号
C 组合数,A (或P) 排列数,n 元素的总个数,r 参与选择的元素个数,! 阶乘等。
7、离散数学符号
如∀ 全称量词,∃存在量词,├ 断定符(公式在L中可证),╞ 满足符(公式在E上有效,公式在E上可满足),﹁ 命题的“非”运算,如命题的否定为﹁p,∧ 命题的“合取”(“与”)运算,∨ 命题的“析取”(“或”,“可兼或”)运算,→ 命题的“条件”运算,↔ 命题的“双条件”运算的等。
5.数学思维导图怎么画
对于数学思维导图怎么画,这个问题呢,其实怎么画思维导图基本都是一个套路,新建一个中心主题,确定子主题,再次对子主题分层次,基本上画思维导图并没有什么难度,除了格式细节的考究。
讨论到这个主题,我觉得最重要的就是解决如何顺着思维导图的结构来把数学知识点梳理透彻,这才是重中之重。否则思维导图只是一个空壳,并起不了任何的作用。
我们以一个知识点(数学实例:实数)来举例,否则有点跟大白话一样。
1.确定中心主题:即我们想要梳理的数学只是主题。
2.我们先不看图,自己试着用脑瓜子想,先把这些问题想明白了,再操作思维导图。想清楚实数分为哪几类?即包括什么?
实数分为有理数和无理数
3.紧接着有理数分为什么?无理数又分为什么?
4.整数分数可以继续细化,但是无理数的两个子主题已经不能再分了,具体数值就不用再列了。(baidu.com/)
5.最后可以对一些能归类的归类一下,随便用概括或者外框之类,实在分不了的就不用细分了。希望对你有帮助。
大致制作一个数学的思维导图也就是这样,主要是数学的知识点要梳理清楚,一般的数学课本都会有概念性的分析,按照那个归类即可。如何学会画数学思维导图,技巧占小半,头脑占大半,重在概念性的梳理得当,知识点清楚了,数学思维导图也就不难画了,哈哈~~
6.列出初一下学期数学知识的结构图
一、整式的运算
1、整式
2、整式的加法
3、同底数幂的乘法
4、幂的乘方与积的乘方
5、整式的乘法
6、平方差公式
7、完全平方公式
8、整式的除法
二、平行线与相交线
1、余角与补角
2、探索平行的条件
3、平行线的特征
4、用尺规作线段和角
三、生活中的数据
1、认识百万分之一
2、近似数和有效数字
3、世纪新生儿图
课题学习:制作“人口图”
四、概率
1、游戏公平吗
2、摸到红球的概率
3、停留在黑砖上的概率
五、三角形
1、认识三角形
2、图形的全等
3、全等三角形
4、探索三角形全等的条件
5、作三角形
6、利用三角形全等测距离
7、探索直角三角形全等的条件
六、变量之间的关系
1、小车下滑的时间
2、变化中的三角形
3、温度的变化
4、速度的变化
七、生活中的轴对称
1、轴对称现象
2、简单的轴对称图形
3、探索轴对称的性质
4、利用轴对称设计图案
5、镜子改变了什么