整理因数倍数的知识
1.倍数和因数的概念整理
倍数和因数的关系如下撒:
A 除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数是被除数的因数. B 我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。 C 约数和因数的区别有三点:1数域不同。约数只能是自然数,而因数可以是任何数。2关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=1.2,12不能被10整除,10不是12的约数。因数是两个或两个以上的数对它们的乘积关系而言的。如:8*0.2=1.6,8和0.2都是积1.6的因数,离开乘积算式就没有因数了。3大小关系不同。当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可以小于b。例如,5是60的约数,54.8
试试看吧
2.整理与复习同学们,大家学完了《因数与倍数》这一单元,一定对这一
《因数和倍数》单元知识要点:1.因数和倍数的意义:如果数a能被数b整除(b≠0),a就叫做b的倍数,b就叫做a的因数;如:2*6=12中,2和6是12的因数,12是2和6的倍数.一个数的因数的个数是有限的.一个数最小的因数是1,最大的因数是它本身.一个数的倍数的个数是无限的.一个数最小的倍数是它本身,没有最大的倍数. 2.自然数中,凡是2的倍数的数都是偶数;不是2的倍数就是奇数. 自然数中,最小的偶数是0,最小的奇数是1. 3.能被2、3、5整除的数的特征:2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数;5的倍数的特征:个位上是0、5的整数都是5的倍数. 3的倍数的特征:一个数各个数位上的数字之和是3的倍数,这个数就是3的倍数.4.一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数). 一个数,除了1和它本身两个因数,还有别的因数,这样的数叫做合数. 1既不是质数,也不是合数. 质数最多有2个因数,合数至少有3个因数. 自然数中,最小的质数是2,最小的合数4.5.既是质数又是偶数是2. 既是奇数又是合数最小的数是9 两个质数相乘,它们的积一定是合数.6.数的奇、偶性特点:奇数+奇数=偶数; 偶数+偶数=偶数;奇数-奇数=偶数;偶数-偶数=偶数. 奇数+偶数=奇数; 奇数-偶数=奇数. 7.自然数中除1和0以外,不是质数就是合数.如果把自然数按其约数的个数的不同分类,可分为质数、合数、1和0. 自然数中,若按是否是2的倍数分类,可分为奇数和偶数.8.分解质因数:把合数写成质数相乘的形式. 9=3*3,12=2*2*3;9、100以内的知识表.。
3.倍数与因数知识点
数A能被数B整除我们就说数A是数B的倍数,数B就是数A的因数。
一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
两个数共有的倍数叫做这两个数的公倍数,其中最小的一个叫做这两个数的最小公倍数。
两个数共有的因数叫做这两个数的公因数,其中最大的一个叫做这两个数的最大公因数。
公因数只有1的两个数叫做互质数。
4.关于倍数和因数我们学习了哪些内容
倍数:数数1数本身数数数限
倍数:数倍数本身数倍数数限
一个数最小的因数是1,最大的因数是它本身;一个数的因数的个数是无限的。 一个数最小的倍数是它本身,没有最大的倍数;一个数的倍数的个数是无限的。.一个数,如果只有1和它本身两个因数,这样的数就叫做质数(也叫做素数)。 一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。 如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。 .每个合数都可以写成几个质因数相乘的形式;把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
.几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。
公因数只有1的两个数,叫做互质数。如果两个数是互质数,那么它们的最大公因数就只有1。
如果较小的数是较大数的因数,那么它们的最大公因数就是较小的那个数。.用分解质因数的方法求两个数的最大公因数,一般用这两个数公有的质因数去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
如果两个数是互质数,那么它们的最小公倍数就是这两个数的乘积。
5.倍数和因数的概念整理
倍数和因数的关系如下撒:A 除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数是被除数的因数. B 我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。
C 约数和因数的区别有三点:1数域不同。约数只能是自然数,而因数可以是任何数。
2关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=1.2,12不能被10整除,10不是12的约数。
因数是两个或两个以上的数对它们的乘积关系而言的。如:8*0.2=1.6,8和0.2都是积1.6的因数,离开乘积算式就没有因数了。
3大小关系不同。当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可以小于b。
例如,5是60的约数,5< 60,8是4.8的因数,8 >4.8试试看吧。
6.五年级上册因数与倍数的详细知识
A 除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数是被除数的因数.
B 我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。
C 约数和因数的区别有三点:1数域不同。约数只能是自然数,而因数可以是任何数。2关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=1.2,12不能被10整除,10不是12的约数。因数是两个或两个以上的数对它们的乘积关系而言的。如:8*0.2=1.6,8和0.2都是积1.6的因数,离开乘积算式就没有因数了。3大小关系不同。当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可以小于b。例如,5是60的约数,54.8
7.五年级上册因数与倍数的详细知识
【知识点】:
1、认识自然数和整数,联系乘法认识倍数与因数。
像0,1,2,3,4,5,6,…这样的数是自然数。
像-3,-2,-1,0,1,2,3,…这样的数是整数。
2、我们只在自然数(零除外)范围内研究倍数和因数。
3、倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。
补充【知识点】:
一个数的倍数的个数是无限的。
探索活动(一)2,5的倍数的特征
【知识点】:
1、2的倍数的特征。
个位上是0,2,4,6,8的数是2的倍数。
2、5的倍数的特征。
个位上是0或5的数是5的倍数。
3、偶数和奇数的定义。
是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
4、能判断一个数是不是2或5的倍数。能判断一个非零自然数是奇数或偶数。
补充【知识点】:
既是2的倍数,又是5的倍数的特征。个位上是0的数既是2的倍数,又是5的倍数。
探索活动(二)3的倍数的特征
【知识点】:
1、3的倍数的特征。
一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
2、能判断一个数是不是3的倍数。
补充【知识点】:
1、同时是2和3的倍数的特征。
个位上的数是0,2,4,6,8,并且各个数位上的数字的和是3的倍数的数,既是2的倍数,又是3的倍数。
2、同时是3和5的倍数的特征。
个位上的数是0或5,并且各个数位上的数字的和是3的倍数的数,既是3的倍数,又是5的倍数。
3、同时是2,3和5的倍数的特征。
个位上的数是0,并且各个数位上的数字的和是3的倍数的数,既是2和5的倍数,又是3的倍数。
找因数
【知识点】:
在1~100的自然数中,找出某个自然数的所有因数。方法:运用乘法算式,思考:哪两个数相乘等于这个自然数。
补充【知识点】:
一个数的因数的个数是有限的。其中最小的因数是1,最大的因数是它本身。
找质数
【知识点】:
1、理解质数与合数的意义。
一个数只有1和它本身两个因数,这个数叫作质数。
一个数除了1和它本身以外还有别的因数,这个数叫作合数。
2、1既不是质数也不是合数。
3、判断一个数是质数还是合数的方法:
一般来说,首先可以用“2,5,3的倍数的特征”判断这个数是否有因数2,5,3;如果还无法判断,则可以用7,11等比较小的质数去试除,看有没有因数7,11等。只要找到一个1和它本身以外的因数,就能肯定这个数是合数。如果除了1和它本身找不到其他因数,这个数就是质数。
数的奇偶性
【知识点】:
1、运用“列表”“画示意图”等方法发现规律:
小船最初在南岸,从南岸驶向北岸,再从北岸驶回南岸,不断往返。通过“列表”“画示意图”的方法会发现“奇数次在北岸,偶数次在南岸”的规律。
2、能够运用上面发现的数的奇偶性解决生活中的一些简单问题。
3、通过计算发现奇数、偶数相加奇偶性变化的规律:
偶数+偶数=偶数 奇数+奇数=偶数
偶数+奇数=奇数
8.【五年级上册因数与倍数的详细知识】
A 除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数是被除数的因数.B 我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数.C 约数和因数的区别有三点:1数域不同.约数只能是自然数,而因数可以是任何数.2关系不同.约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=1.2,12不能被10整除,10不是12的约数.因数是两个或两个以上的数对它们的乘积关系而言的.如:8*0.2=1.6,8和0.2都是积1.6的因数,离开乘积算式就没有因数了.3大小关系不同.当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可以小于b.例如,5是60的约数,54.8。