二年级下几何小知识

bdqnwqk1年前百科7

1.小学二年级,手抄报,数学小知识

在古代,人们在日常生活中以常需要量物体的长短、田块的大小,需要知道物品的轻重等,这就逐渐有了长度、面积、重(质)量等量的概念。

测量长度时,开始人们用身体的某一部分,如一度、一步来测量。后来发明了一些简单的工具,统一了测量的标准。

现在又有了各种各样的尺,测量更方便了。 2.我们知道阿拉伯数字1、2、3、4、5、6、7、8、9原是印度人发明的,13世纪后期传入中国,人们误认为0也是印度人发明的。

其实印度起先发明时没有“0”,他们把“204”,写成“2 4”,中间空着,把2004,写成“2 4”,怎么区别中间有几个零呢?为了避免看不清,就用点“·”来表示,204写成“2·4”,那不和小数混淆了?直到公元876年才把“0”确定下来。 我国却在1240年前就已创造了“0”,我国的零,当时是“○”,它是根据写字时缺字用“□”来表示缺字,“0”表示这个数没有,或这个数位上没有,用“○”表示,随着人们长期不断地记数,慢慢发展演变,最后确定为今天的“0”。

因此以“0”作为零是我国古代数学家的一项杰出贡献。 3.及是世界上文化发达最早的地区之一。

它位于尼罗河两岸。大约公元前3200年,经过近800年的斗争,埃及全境实现了统一。

由于尼罗河定期泛滥,人们为了丈量河水泛滥后的土地,由此产生了埃及古老的数学。 现在我们对古埃及数学的认识,主要源于两部用象形文字写成的书。

一本是伦敦本,一本是莫斯科本。伦敦本是在古埃及都城的废墟中发现的,1858年被英国人莱因特所购得,因此又叫莱因特纸草书。

纸草是盛产在尼罗河三角洲的一种水生植物,形状象芦苇,当时人们把它的茎逐层撕成薄片,就可以写字。这本书长550厘米,宽33厘米,是埃及僧人阿默士所著,成书年代约在公元前1700年,距现在约有3700多年。

书名为《阐明对象中一切黑暗的、秘密事物的指南》,全书共分三章:一是算术,二是几何,三是杂题;共有题目85个,大概是当时的一种实用计算手册。 莫斯科本是俄罗斯收藏者在1893年获得的,1912年转为莫斯科博物馆所有。

它的成书年代大约是公元前1850年。书中记载了25个问题,可惜缺少卷首,不知书名。

在这两部纸草书中,不但有一元一次方程的计算,还有当时埃及分数的算法。在应用题中,涉及粮食、酒类、动物饲养及谷物的贮藏等问题。

特别是有一些算题出得非常精彩。 这说明,在距今4000年前,人们就已经应用数学来解决生产、生活中的实际问题了。

4.中国人从古到今都重视“3”的哲学价值。以“3”论人,有三皇、三苏;以“3”论文,有“三部曲”、“三言”;以“3”论花木,有园林三宝——树中银杏、花中牡丹、草中兰。

人们还以“3”论学习。如宋代哲学家朱熹认为读书要三到:心到、眼到、口到。

外国人也极其重视“3”。早在公元前5世纪,古希腊哲学家毕达哥拉斯就把“3”称为完美的数字,因为它体现了“开始、中期和终结”,具备神性。

在古希腊、罗马神话中,世界由三位大神——主神朱庇特,海神尼普顿,冥神普路托掌管。朱庇特手中拿的是三叉闪电,尼普顿手持三叉戟,普路托手牵一条三头狗。

希腊神话中传说的女神也有三位:命运女神、复仇女神和美惠女神。 古代的西方人认为,世界由三者合成——大地、海洋、天空;自然界有三项内容——动物、植物、矿物;人的身体具有三重性——肉体、心灵、精神;人类需要三种知识——理论、实用、鉴别;智慧包括三个方面——思虑周密、语言得当、行为公正。

在近代、现代,人们的许多说法仍然离不开“3”。法国大文学家雨果说:人的智慧掌握着三把钥匙:一把启开数学,一把启开字母,一把启开音符。

这就是说,聪明的人要学好数学、语言和音乐。著名的物理学家爱因斯坦总结成功的三条经验是:艰苦的工作、正确的方法和少说空话。

5. 数学小百科:(一)你知道吗?我国是世界上最早使用四舍五入法进行计算的国家。大约二千年前,人们就已经使用四舍五入法进行计算了。

(二)在世界四大洋中,太平洋的平均水深约是大西洋的3倍,太平洋的平均水深比大西洋多400米,印度洋的平均水深比太平洋少103米。大西洋、太平洋、印度洋的平均水深各是多少米?(三)小东同学是名小网民,他每天都要到互联网上去看一看。

昨天,他在网上看到了这样一条信息:中国平均每秒向大海排放污水约316吨,美国是中国的2倍,俄罗斯是中国的3倍,其他沿海国家向大海排放污水的问题是中国的29倍。 6.“数学”名称的由来古希腊人在数学中引进了名称,概念和自我思考,他们很早就开始猜测数学是如何产生的。

虽然他们的猜测仅是匆匆记下,但他们几乎先占有了猜想这一思考领域。古希腊人随意记下的东西在19世纪变成了大堆文章,而在20世纪却变成了令人讨厌的陈辞滥调。

在现存的资料中,希罗多德(Herodotus,公元前484--425年)是第一个开始猜想的人。他只谈论了几何学,他对一般的数学概念也许不熟悉,但对土地测量的准确意思很敏感。

作为一个人类学家和一个社会历史学家,希罗多德指出,古希腊的几何来自古埃及,在古埃及,由于一年一度的洪水淹没土地,为了租税的目的,人们。

2.二年级下册数学应用题大全

一、填空.1、4000克=( )千克 2小时 =( )分5分 =( )秒 24于克 =( )克2米 =( )厘米 30分米 =( )米2、在空格里写数.四百 二百七十 一千二百一十五 六百零三 七千零二十 九百九十3、从998写到1009:.4、下面钟面上表示的时刻是:( ) ( ) 从上一个钟面到下一个钟面经过的时间是( ).5、上午第一节课8:30上课,一节课上了40分钟,下课的时间是( :).6、千位上是4,百位上是7,十位和个位都是0的数是( ).1995是一个( )位数.它的最高位是( )位,它是由( )千、( )个百、( )个十和( )个一组成的.7、在○里填上>、,、。

3.初中二年级数学全部几何定理

1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ? 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2 b^2=c^2 47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2 b^2=c^2 ,那么这个三角形是直角三角形 48 定理 四边形的内角和等于360° 49 四边形的外角和等于360° 50 多边形内角和定理 n边形的内角的和等于(n-2)*180° 51 推论 任意多边的外角和等于360° 52 平行四边形性质定理1 平行四边形的对角相等 53 平行四边形性质定理2 平行四边形的对边相等 54 推论 夹在两条平行线间的平行线段相等 55 平行四边形性质定理3 平行四边形的对角线互相平分 56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60 矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62 矩形判定定理1 有三个角是直角的四边形是矩形 63 矩形判定定理2 对角线相等的平行四边形是矩形 64 菱形性质定理1 菱形的四条边都相等 65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66 菱形面积=对角线乘积的一半,即S=(a*b)÷2 67 菱形判定定理1 四边都相等的四边形是菱形 68 菱形判定定理2 对角线互相垂直的平行四边形是菱形 69 正方形性质定理1 正方形的四个角都是直角,四条边都相等 70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71 定理1 关于中心对称的两个图形是全等的 72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75 等腰梯形的两条对角线相等 76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77 对角线相等的梯形是等腰梯形 78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分。

二年级下几何小知识

标签: 二年级几何