集合的概念知识框架图

bdqnwqk1年前百科15

1.试画出《集合》一章的知识结构图.

答案:解析: 假设我们刚复习完《集合》那一章,想一想那一章都讲了些什么.首先给出了集合的概念,其次讨论了集合的表示方法,接着介绍了集合的关系,最后研究了集合的运算,于是我们有了一个粗略的结构图: 此结构图反映了“概念”、“表示方法”、“关系”、“运算”与“集合”之间的从属关系.这个框架太粗略了,于是“表示方法”一栏又可分解为: 接下来考虑集合的关系,也就是包含关系与被包含关系,进而有了子集的概念,子集又包含真子集和相等,至此两集合的关系就很清楚了.最后考虑集合的运算,它可以细分为集合的并集、交集、补集. 于是,《集合》一章的知识结构图便成形如下:。

2.高一数学(集合)知识概念总结

集合

1.集合的概念与表示方法

A.概念~~~~

B.表示方法 a.列举法 b.描述法 c.图示法

2.集合间的关系

A.包含---子集与真子集

B.相等

3.集合的运算

A.交集

B.并集

C.补集

4.集合的应用---不等式的解集

A.含绝对值不等式

B.一元二次不等式

C.简单分式不等式

把上面的画成网络式,再把书中对应的内容填上就行了.

3.高中数学“集合” 的 概念归纳及解题格式

g3.1001集合的概念和运算(1)一、知识回顾:1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法.3. 集合元素的特征:确定性、互异性、无序性.4. 集合运算:交、并、补.5. 主要性质和运算律(1) 包含关系: (2) 等价关系: (3) 集合的运算律:交换律: 结合律: 分配律:. 0-1律: 等幂律: 求补律:A∩??UA=φ A∪??UA=U ??UU=φ ??Uφ=U ??U(??UA)=A反演律:??U(A∩B)= (??UA)∪(??UB) ??U(A∪B)= (??UA)∩(??UB)。

4.关于集合的知识点详细汇集

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 2.集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2} 4、集合的分类: 1.有限集 含有有限个元素的集合 2.无限集 含有无限个元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ① 任何一个集合是它本身的子集。

AíA ②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 AíB, BíC ,那么 AíC ④ 如果AíB 同时 BíA 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的运算 1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。

记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A. 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作: CSA 即 CSA ={x | x?S且 x?A} S CsA A (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U。

集合的概念知识框架图

标签: 框架概念