知识图谱构建方法设计研究
基于多数据源的知识图谱构建方法研究摘要:针对多数据源的融合应用,构建了基于多数据源的知识图谱。首先,对不同领域内的数据源构建相应本体库,并将不同本体库通过数据融合映射到全局本体库,然后,利用实体对齐和实体链接方法进行知识获取和融合,最后,搭建知识图谱应用平台,提供查询和统计等操作。在实体对齐方面,利用传统的基于相似性传播实体对齐方法,获得良好的实体对齐效果;在实体链接方面,提出了基于约束嵌入转换的预测推理方法,实验结果表明,在预测准确率上取得较好的结果。0引言在大数据时代背景下,随着海量数据的出现以及多数据源融合交叉应用,传统的数据管理模式以及查询方式受到一定的制约。近年来,知识图谱(Knowledge Graph)[1]作为一种新的知识表示方法和数据管理模式,在自然语言处理、问题回答、信息检索等领域有着重要的应用。知识图谱是结构化的语义知识库,用于以符号形式描述物理世界中的概念及其相互关系;其基本组成单位是“实体-关系-实体”三元组,以及实体及其相关属性-值对,实体间通过关系相互联结,构成网状的知识结构[2]。随着谷歌知识图谱的发布,知识图谱的构建与应用研究引起了学术界和工业界的广泛关注。在国内,知识图谱的构建与研究已经起步,相应取得许多重要的研究成果。如:搜狗的知立方、百度知心;复旦大学现有的行业领域知识图谱通常采用手工构建方式,缺乏统一的构建方法,且这类知识库目标是特定行业领域,因此