归纳语文数学知识点的脑图

bdqnwqk1年前学者9

1.初一数学上册知识点,思维导图急用

1.2数值:1.在数轴上,表示互为相反数(0除外)的两个点,位于原点的两侧,并且到原点的距离相等。

1.3绝对值:1.一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0.互为相反数的两个数的绝对值相等。

1.4有理数的大小比较:1.在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于0,负数都小于0,正数大于负数.。

2.两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的反而小。

2.小学数学知识数怎么画

知识树是今年来比较流行的知识点归类的方法之一。实际和原来的画括号是相同的。仅仅是形象化了而已。

比如,树干表示 “数”,第一级分叉表示:整数,分数,小数。第三级分叉,整数的可以分为自然数和负整数,分数再分成分数和百分数,小数分成有限小数和无限小数,接着第四级继续分。

这是一种系统梳理知识的过程,每一步中都要具体理解相关的知识点,包括概念、性质、特点等等。

具体在学习使用时,先学画分类比较少的,等学会了就都可以用了。

3.画出集合的知识导图

数学符号的发明及使用比数字要晚,但其数量却超过了数字。现在常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。

数学符号有太多比一一例举,比如有:

1、运算符号

如加号(+),减号(-),乘号(*或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。

2、关系符号

如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>;”是大于符号,“<;”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于),“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系),“∈”是属于符号,“⊆”是包含于符号,“⊇”是包含符号,“|”表示“能整除”(例如a|b 表示“a能整除b”,而||b表示r是a恰能整除b的最大幂次),x,y等任何字母都可以代表未知数。

3、结合符号

如小括号“()”,中括号“[ ]”,大括号“{ }”,横线“—”

4、性质符号

如正号“+”,负号“-”,正负号等。

5、省略符号

如三角形(△),直角三角形(Rt△),正弦(sin)(见三角函数),双曲正弦函数(sinh),x的函数(f(x)),极限(lim),角(∠),∵ 因为,∴ 所以等等。

6、排列组合符号

C 组合数,A (或P) 排列数,n 元素的总个数,r 参与选择的元素个数,! 阶乘等。

7、离散数学符号

如∀ 全称量词,∃存在量词,├ 断定符(公式在L中可证),╞ 满足符(公式在E上有效,公式在E上可满足),﹁ 命题的“非”运算,如命题的否定为﹁p,∧ 命题的“合取”(“与”)运算,∨ 命题的“析取”(“或”,“可兼或”)运算,→ 命题的“条件”运算,↔ 命题的“双条件”运算的等。

4.初中数学,二次函数、圆、几、正、反比例函数、等知识点的思维导图

初中数学概念及定义总结 三角形三条边的关系 定理:三角形两边的和大于第三边 推论:三角形两边的差小于第三边 三角形内角和 三角形内角和定理 三角形三个内角的和等于180° 推论1 直角三角形的两个锐角互余 推论2 三角形的一个外角等于和它不相邻的两个内角和 推论3 三角形的一个外角大雨任何一个和它不相邻的内角 角的平分线 性质定理 在角的平分线上的点到这个角的两边的距离相等 判定定理 到一个角的两边的距离相等的点,在这个角的平分线上 等腰三角形的性质 等腰三角形的性质定理 等腰三角形的两底角相等 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 推论2 等边三角形的各角都相等,并且每一个角等于60° 等腰三角形的判定 判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等 推论1 三个角都相等的三角形是等边三角形 推论2 有一个角等于60°的等腰三角形是等边三角形 推论3 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 线段的垂直平分线 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 轴对称和轴对称图形 定理1 关于某条之间对称的两个图形是全等形 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 定理3 两个图形关于某直线对称,若它们的对应线段或延长线相交,那么交点在对称轴上 逆定理 若两个图形的对应点连线被同一条直线垂直平分,那这两个图形关于这条直线对称 勾股定理 勾股定理 直角三角形两直角边a、b的平方和,等于斜边c的平方,即 a2 + b2 = c2 勾股定理的逆定理 勾股定理的逆定理 如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形 四边形 定理 任意四边形的内角和等于360° 多边形内角和 定理 多边形内角和定理n边形的内角的和等于(n - 2)·180° 推论 任意多边形的外角和等于360° 平行四边形及其性质 性质定理1 平行四边形的对角相等 性质定理2 平行四边形的对边相等 推论 夹在两条平行线间的平行线段相等 性质定理3 平行四边形的对角线互相平分 平行四边形的判定 判定定理1 两组对边分别平行的四边形是平行四边形 判定定理2 两组对角分别相等的四边形是平行四边形 判定定理3 两组对边分别相等的四边形是平行四边形 判定定理4 对角线互相平分的四边形是平行四边形 判定定理5 一组对边平行且相等的四边形是平行四边形 矩形 性质定理1 矩形的四个角都是直角 性质定理2 矩形的对角线相等 推论 直角三角形斜边上的中线等于斜边的一半 判定定理1 有三个角是直角的四边形是矩形 判定定理2 对角线相等的平行四边形是矩形 菱形 性质定理1 菱形的四条边都相等 性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 判定定理1 四边都相等的四边形是菱形 判定定理2 对角线互相垂直的平行四边形是菱形 正方形 性质定理1 正方形的四个角都是直角,四条边都相等 性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 中心对称和中心对称图形 定理1 关于中心对称的两个图形是全等形 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 梯形 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 三角形、梯形中位线 三角形中位线定理 三角形的中位线平行与第三边,并且等于它的一半 梯形中位线定理 梯形的中位线平行与两底,并且等于两底和的一半 比例线段 1、比例的基本性质 如果a∶b=c∶d,那么ad=bc 2、合比性质 3、等比性质 平行线分线段成比例定理 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 推论 平行与三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行与三角形的第三边 垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 推论1 (1) 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 (2) 弦的垂直平分线过圆心,并且平分弦所对的两条弧 (3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平分弦所夹的弧相等 圆心角、弧、弦、弦心距之间的关系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等 圆周角 定理 一条弧所对的圆周角等于它所对的圆心角的一半 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直角 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 圆。

5.人教版初一数学上册语文知识点归纳总结

初一数学上册复习教学知识点归纳总结 一:有理数 知识网络:概念、定义:1、大于0的数叫做正数(positive number)。

2、在正数前面加上负号“-”的数叫做负数(negative number)。3、整数和分数统称为有理数(rational number)。

4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。5、在直线上任取一个点表示数0,这个点叫做原点(origin)。

6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8、正数大于0,0大于负数,正数大于负数。9、两个负数,绝对值大的反而小。

10、有理数加法法则 (1)同号两数相加,取相同的符号,并把绝对值相加。(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。13、有理数减法法则 减去一个数,等于加上这个数的相反数。

14、有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。

15、有理数中仍然有:乘积是1的两个数互为倒数。16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

19、有理数除法法则 除以一个不等于0的数,等于乘这个数的倒数。20、两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。

在an 中,a叫做底数(basenumber),n叫做指数(exponeht)22、根据有理数的乘法法则可以得出 负数的奇次幂是负数,负数的偶次幂是正数。显然,正数的任何次幂都是正数,0的任何次幂都是0。

23、做有理数混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;(2) 同级运算,从左到右进行;(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。24、把一个大于10数表示成a*10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。

25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit) 注:黑体字为重要部分 二:整式的加减 知识网络:概念、定义:1、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。

2、单项式中的数字因数叫做这个单项式的系数(coefficient)。3、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。

4、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。5、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。

6、把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

三:一元一次方程 知识网络:概念、定义:1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。

3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。6、把等式一边的某项变号后移到另一边,叫做移项。

7、应用:行程问题:s=v*t 工程问题:工作总量=工作效率*时间 盈亏问题:利润=售价-成本 利率=利润÷成本*100% 售价=标价*折扣数*10% 储蓄利润问题:利息=本金*利率*时间 本息和=本金+利息 三:图形初步认识 知识网络:概念、定义:1、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure)。

3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure)。4、将由平面图形围成的。

6.关于初一数学的所有知识点归纳,还有语文

初一数学概念 实数: —有理数与无理数统称为实数。

有理数: 整数和分数统称为有理数。 无理数: 无理数是指无限不循环小数。

自然数: 表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。 数轴: 规定了圆点、正方向和单位长度的直线叫做数轴。

相反数: 符号不同的两个数互为相反数。 倒数: 乘积是1的两个数互为倒数。

绝对值: 数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

数学定理公式 有理数的运算法则 ⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。 ⑵减法法则:减去一个数,等于加上这个数的相反数。

⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。 ⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

文体知识1 记叙文文体知识要点(1) 以记叙文为主要表达方式的文章叫记叙文.语言特点,生动,形象.(2) 作品中所反映的生活和作者对生活的看法,就是记叙文的中心,也叫中心思想.中心思想是依靠人,事,景,物这些材料来表的.因而记叙文的材料必须为中心思想服务,做到中心明确,集中.(3) 记叙文的顺序主要有几种:顺叙,倒叙,插叙.顺叙:按事件的发生,发展结局的过程记叙. 倒叙:把事件的结局或某个最突出的片断提到文章的开头写,然后再按时间顺序写事件的经过. 插叙:在记叙过程中,有时需要插入另一些有关的情节,然后再按着记叙原来的事情.(4) 记叙文中的详略安排应该是能突出中心的材料应该详写;与中心有关系,但是不很重要的材料,应该略写;与中心无关的材料应该舍弃.这样,才能使记叙的中心集中,鲜明,突出.(5) 记叙文的样式常见有:对现实生活中典型人物和事迹作具体报道的通讯.用文字语言和文学手法描述真人真事的特写.记叙山川景物,旅途见闻为主的游记. 追忆本人或生活经历和社会活动的回忆录,传记,访问记等.它们共同特点是:所写内容必须真实,不容许随意夸大或缩小事实,更不能编造虚构,即要有真实性;对所写的内容又要求作必要的加工.力求文章中心突出,形象鲜明,构思精巧(6) 特写是报告文学的一种样式,它截取人物或事件的某个片断,细致地加以描述.(7) 传记一般分两类:一类记叙自己的生平;一类记叙他人的生平。传记的主要特点是实录,要求实事求是,不允许虚构夸张。

传记在表达上以记叙为主,也可以适当插入议论,描写。传记记叙的顺序一般以时间为序。

人物和人物故事的区别在于人物故事只要具体写出人物的某个事件或某几件事就行了。小传则要求写出人物的出生地,出生年月,主要经历等。

人物自传的繁简区别在于自传可以根据需要采用不同写法,可以写自己全部经历,也可以写自己某个时期的经历。2 说明文文体知识要点(1)以说明为主要表达方式,按一定的要求解说事物或事理的文章称为说明文。

说明文的语言特点:准确,平实,简洁。(2)说明事物的前提是抓住事物的特征。

所谓特征就是事物间相互区别的标志。(3)说明文的说明顺序有:空间顺序,时间顺序,逻辑顺序,(有总说后分说,先主要后次要,先原因后结果,由现象到本质,由性能到功用等)(4)常用的说明方法有:分类别,作解释,举例子,打比方,作比较,用数字,列图表。

(5)说明文按说明对象和内容分有:说明实体事物和说明抽象事理两大类。说明文按写作方法和表达方式分有:平实性说明文和文艺性说明文。

(6)平实性说明文和文艺性说明文的区别在于:平实性说明文纯用说明的表达方式,语言朴实简明,内容具体,切实使人读了就能明白。如自然科学的各类教科书。

科技信息资料,实验报告,说明书等。文艺性说明文以说明为主,辅以叙述,描写,抒情等多种表达方式,并常用借助一些修辞方法,形象化地介绍事物或阐述事理,使读者在获得知识的同时,还能得到艺术的享受,这类说明文通常称知识小品或科学小品。

(7)说明文的描写和记叙文中的描写区别:a 目的不同:记叙文中的描写是为了“使人有所感,”;说明文的描写是为了“使人有所知”。b 记叙文可以根据中心思想的需要,使用各种描写方法起到多方面的作用。

说明文的描写则只能在说明事物的过程中,借助某钟形象化的手法,对事物的特征作一些必要的描绘,主要是起到使说明的事物特征更具体,更形象。c 记叙文中的描写可以发挥艺术想象,可以夸张,渲染,而说明文中的描写在务真求实的前提下进行语言加工,做到既形象生动,又真实可信。

3 议论文文体的知识要点(1)生活中少不了议论,讲道理,发表意见就是议论。以议论为主要表达方式的文章就是议论文。

(2)议论总要提出看法或主张,这种看法或主张就是论点,用来证明论点的材料就为论据,用论据来证明论点的过程即为论证过程。(3)用以证明论点的材料有两大类:事实材料(事实论据)即确凿的事例;史实;统计。

归纳语文数学知识点的脑图

标签: 知识点归纳