初二的知识点总结
1.初二各科的知识考点是什么
初二数学知识考点知识要点 1.分式的有关概念设A、B表示两个整式.如果B中含有字母,式子 就叫做分式.注意分母B的值不能为零,否则分式没有意义分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简2、分式的基本性质(M为不等于零的整式)3.分式的运算 (分式的运算法则与分数的运算法则类似). (异分母相加,先通分); 4.零指数 5.负整数指数 注意正整数幂的运算性质 可以推广到整数指数幂,也就是上述等式中的m、n可以是O或负整数.6、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去.7、列分式方程解应用题的一般步骤:(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位)。
正比例、反比例、一次函数第一象限(+,+),第二象限(-,+)第三象限(-、-)第四象限(+,-);x轴上的点的纵坐标等于0,反过来,纵坐标等于0的点都在x轴上,y轴上的点的横坐标等于0,反过来,横坐标等于0的点都在y轴上,若点在第一、三象限角平分线上,它的横坐标等于纵坐标,若点在第二,四象限角平分线上,它的横坐标与纵坐标互为相反数;若两个点关于x轴对称,横坐标相等,纵坐标互为相反数;若两个点关于y轴对称,纵坐标相等,横坐标互为相反数;若两个点关于原点对称,横坐标、纵坐标都是互为相反数。1、一次函数,正比例函数的定义(1)如果y=kx+b(k,b为常数,且k≠0),那么y叫做x的一次函数。
(2)当b=0时,一次函数y=kx+b即为y=kx(k≠0).这时,y叫做x的正比例函数。注:正比例函数是特殊的一次函数,一次函数包含正比例函数。
2、正比例函数的图象与性质(1)正比例函数y=kx(k≠0)的图象是过(0,0)(1,k)的一条直线。(2)当k>0时 y随x的增大而增大 直线y=kx经过一、三象限 从左到右直线上升。
当k<0时 y随x的增大而减少 直线y=kx经过二、四象限 从左到右直线下降。3、一次函数的图象与性质(1) 一次函数y=kx+b(k≠0)的图象是过(0,b)(- ,0)的一条直线。
注:(0,b)是直线与y轴交点坐标,(-,0)是直线与x轴交点坐标.(2)当k>0时 y随x的增大而增大 直线y=kx+b(k≠0)是上升的当k<0时 y随x的增大而减少 直线y=kx+b(k≠0)是下降的4、一次函数y=kx+b(k≠0, k b 为常数)中k 、b的符号对图象的影响(1)k>0, b>0 直线经过一、二、三象限(2)k>0, b<0 直线经过一、三、四象限(3)k<0, b>0 直线经过一、二、四象限 (4)k<0, b<0 直线经过二、三、四象限5、对一次函数y=kx+b的系数k, b 的理解。(1)k(k≠0)相同,b不同时的所有直线平行,即直线;直线(均不为零,为常数)(2)k(k≠0)不同,b相同时的所有直线恒过y轴上一定点(0,b),例如:直线y=2x+3, y=-2x+3, 均交于y轴一点(0,3)6、直线的平移:所谓平移,就是将一条直线向左、向右(或向上,向下)平行移动,平移得到的直线k不变,直线沿y轴平移多少个单位,可由公式得到,其中b1,b2是两直线与y轴交点的纵坐标,直线沿x轴平移多少个单位,可由公式求得,其中x1,x2是由两直线与x轴交点的横坐标。
7、直线y=kx+b(k≠0)与方程、不等式的联系(1)一条直线y=kx+b(k≠0)就是一个关于y的二元一次方程(2)求两直线的交点,就是解关于x,y的方程组 (3)若y>0则kx+b>0。若y<0,则kx+b<0 (4)一元一次不等式,y1≤kx+b≤y2( y1,y2都是已知数,且y1 (5)一元一次不等式kx+b≤y0(或kx+b≥y0)( y0为已知数)的解集就是直线y=kx+b上满足y≤y0(或y≥y0)那条射线所对应的自变量的取范围。8、确定正比例函数与一次函数的解析式应具备的条件(1)由于比例函数y=kx(k≠0)中只有一个待定系数k,故只要一个条件(如一对x,y的值或一个点)就可求得k的值。 (2) 一次函数y=kx+b中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点,或两对x,y的值。9、反比例函数 (1) 反比例函数及其图象如果,那么,y是x的反比例函数。 反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象(2)反比例函数的性质当K>0时,图象的两个分支分别在一、三象限内,在每个象限内, y随x的增大而减小;当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y随x的增大而增大。 (3)由于比例函数中只有一个待定系数k,故只要一个条件(如一对x,y的值或一个点)就可求得k的值。 回答人的补充 2009-08-21 14:04 三角形相似相似三角形的判定方法:(1)若DE‖BC(A型和X型)则△ADE∽△ABC(2)射影定理 若CD为Rt△ABC斜边上的高(双直角图形)初二物理知识点总结物理量(单位) 公式 备注 公式的变形 速度V(m/S) v= S:路程/t:时间 重力G (N) G=mg; m:质量 g:9.8N/kg。 第一章 1.1 正数与负数 在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。 与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。 1.2 有理数 正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。 整数和分数统称有理数(rational number)。 通常用一条直线上的点表示数,这条直线叫数轴(number axis)。 数轴三要素:原点、正方向、单位长度。 在直线上任取一个点表示数0,这个点叫做原点(origin)。 只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0) 数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。 1.3 有理数的加减法 有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加。 2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 互为相反数的两个数相加得0。 3.一个数同0相加,仍得这个数。 有理数减法法则:减去一个数,等于加这个数的相反数。 1.4 有理数的乘除法 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数同0相乘,都得0。 乘积是1的两个数互为倒数。 有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。 0除以任何一个不等于0的数,都得0。 mì 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。 在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。 负数的奇次幂是负数,负数的偶次幂是正数。 正数的任何次幂都是正数,0的任何次幂都是0。 把一个大于10的数表示成a*10的n次方的形式,使用的就是科学计数法。 从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。 第二章 一元一次方程 2.1 从算式到方程 方程是含有未知数的等式。 方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。 等式的性质: 1.等式两边加(或减)同一个数(或式子),结果仍相等。 2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 2.2 从古老的代数书说起——一元一次方程的讨论(1) 把等式一边的某项变号后移到另一边,叫做移项。 第三章 图形认识初步 3.1 多姿多彩的图形 几何体也简称体(solid)。 包围着体的是面(surface)。 3.2 直线、射线、线段 线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。 连接两点间的线段的长度,叫做这两点的距离。 3.3 角的度量 1度=60分 1分=60秒 1周角=360度 1平角=180度 3.4 角的比较与运算 如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。 如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。 等角(同角)的补角相等。 等角(同角)的余角1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上。 时间如流水 一个学期的时间就这样过去了 所有的艰辛和努力都在期末考试上体现出了 有些人在这一个学期里留下的是一段美好的回忆 而有些人却因为自己一时的疏忽和不认真留下了一段痛苦的回忆 这次期末考试的成绩虽然还没有下来 但我心中已有了准 应该是不好也不差吧 比起以前还真是有些堕落了 语文 初一时 它是我的强项 而现在 我却因为自己的不认真而造成许多题不会写 或者说就是没好好复习 这可真是个遗憾 下学期好好努力吧 还是有机会的 数学 一直是给我拉分的科目 主要是因为自己的思路不明确 找不到解题的方法 看来还是需要强加练习阿 这次考试也是有没多题没写上来 英语 还是不能十拿九稳 至于考得好还是不好 我自己都不清楚 因为完型和阅读还是有些迷惑 但选 完成句子什么的都是原于目标检测 幸亏我复习了 应该写的还不错吧 物理 这一科目是我们步入初二以来的一门新科目 我觉得我这次的物理考得还可以吧 只是如果自己更努力的话 可能会考的更好 在讲电学时 我听不懂索性就不听了 不过最终还是弄明白了 是因为临考的几个小时前才问同学 才弄明白 以后我要好好听课啊 这个学期总体来说 还是退步了很多 在初二下学期 我一定要上课专心听讲 有不懂的题就马上问同学 以免留下考试后的遗憾 相信自己吧 我能行 一定能行 一定会努力的 初二学生上学期期末总结 过去的半年,是个值得珍惜的半年。我从知识海洋中又汲取了更多的知识,失败着、痛苦着,但我始终在前进。 过去的半年,学习中我注意总结、思考,认认真真看书,及时的预习,及时的总结自己不明白的问题,虽然期末考试成绩不太理想,但我是认真的学习过的;日常生活中,我注意团结同学,尊敬老师,爱护公物,积极打扫卫生,积极参加各种学校举办的活动。 过去的半年,我继续着为国做贡献的思想。努力学习,积极锻炼身体,为我即将开始的新学年打好知识基础,身体基础。可我需要更好的鞭策自己,我准备参加光荣的中国共青团,打好自己的思想基础! 在即将到来的新学年,我会继续沿着做三好学生,做个有道德、有思想、有抱负的社会主义新团员努力! 经过对这一学期的总结,我知道了我的优势和不足。我会在以后的学习中不断优化自己的学习方法,提高学习效率,发扬优点,改进不足,积极进取,不断努力,争取取得更高的成绩。 以资本为最重要生产力的"资本家"的时代将要过去,以知识为特征的"知本家"的时代即将到来。而中学时代是学习现代科学知识的黄金时代,中国的本科教育又是世界一流的,我应该抓住这个有利的时机,用知识来武装自己的头脑,知识是无价的。首先,合理安排时间,调整好作息时间,分配好学习、工作、娱乐的时间。时间是搞好学习的前提与基础,效率和方法更为重要。其次,要保质保量的完成老师布置的作业,老师布置的作业一般是她多年教学经验的总结,具有很高的价值,应认真完成。认真对待考试,考前认真复习。另外,积极阅读有关书籍和资料,扩大自己的知识面;经常提出问题,与同学讨论,向老师请教;搞好师生关系,师生相处得融洽和睦;抓住点滴时间学习一些其它专业领域的知识,知识总是有用的。在这学期的期中考试中,尽管取得一些成绩,但离心中的目标还很远,仍需继续努力,抓紧自己的学习。知识无止境,探索无止境,人的发展亦无止境,我还有很多的知识需要学习。 在纪律方面,基本可以做到:尊重教师,同学之间可以真诚相待;能遵守学校各项纪律,遵守公共秩序,遵守社会公德;不迟到、不早退、不旷课;上学穿校服;举止文明; 有良好的卫生习惯,不乱扔废弃物。 自己组织一下语言吧。 语文--重视基础,多巩固古诗文及文言注释顺便积累一些日常语文和文学常识; 数学--注重整和知识的网络构造,发现知识间的联系,再辅以题目巩固; 英语--重点提高做完形填空,阅读理解,书面表达的能力。认真做复习笔记。记忆已经遗忘的零散知识点,有了疑问就及时向老师请教; 物理--夯实基础,有选择地做一些综合性的题目; 化学--牢记化学基本知识,注意联系实际生活,多见题型; 政治--完全熟悉所有课本内容,举一反三,揣摩做简答题的技巧,以量变达质变; 历史--掌握课本上出现的历史事件,强调比较同时期不同地方和同地方不同时期的历史变化; 地理--认清各种地图,熟记地理知识,关注人文地理; 生物--多了解生物史上的实例,记忆基本知识点,提高基本技能,做一些综合题。 中出现次数最多八年级数学上册复习提纲 第一章 勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即 。 2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。3.勾股定理逆定理:如果三角形的三边长 , , 满足 ,那么这个三角形是直角三角形。 满足 的三个正整数称为勾股数。第二章 实数1.平方根和算术平方根的概念及其性质:(1)概念:如果 ,那么 是 的平方根,记作: ;其中 叫做 的算术平方根。 (2)性质:①当 ≥0时, ≥0;当 2.立方根的概念及其性质:(1)概念:若 ,那么 是 的立方根,记作: ;(2)性质:① ;② ;③ = 3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。 4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。 因此,数轴正好可以被实数填满。5.算术平方根的运算律: ( ≥0, ≥0); ( ≥0, >0)。 第三章 图形的平移与旋转1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。 2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。 旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的联机所成的角都是旋转角;对应点到旋转中心的距离相等。3.作平移图与旋转图。 第四章 四边形性质的探索1.多边形的分类:2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:(1)平行四边形:两组对边分别平行的四边形叫做平行四边形。平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。 两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。(2)菱形:一组邻边相等的平行四边形叫做菱形。 菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。 菱形的面积等于两条对角线乘积的一半(面积计算,即S 菱形=L1*L2/2)。(3)矩形:有一个内角是直角的平行四边形叫做矩形。 矩形的对角线相等;四个角都是直角。对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。 直角三角形斜边上的中线等于斜边长的一半; 在直角三角形中30°所对的直角边是斜边的一半。(4)正方形:一组邻边相等的矩形叫做正方形。 正方形具有平行四边形、菱形、矩形的一切性质。(5)等腰梯形同一底上的两个内角相等,对角线相等。 同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形。(6)三角形中位线:连接三角形相连两边重点的线段。 性质:平行且等于第三边的一半3.多边形的内角和公式:(n-2)*180°;多边形的外角和都等于 。4.中心对称图形:在平面内,一个图形绕某个点旋转 ,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。 第五章 位置的确定1.直角坐标系及坐标的相关知识。2.点的坐标间的关系:如果点A、B横坐标相同,则 ∥ 轴;如果点A、B纵坐标相同,则 ∥ 轴。 3.将图形的纵坐标保持不变,横坐标变为原来的 倍,所得到的图形与原图形关于 轴对称;将图形的横坐标保持不变,纵坐标变为原来的 倍,所得到的图形与原图形关于 轴对称;将图形的横、纵坐标都变为原来的 倍,所得到的图形与原图形关于原点成中心对称。第六章 一次函数1.一次函数定义:若两个变数 间的关系可以表示成 ( 为常数, )的形式,则称 是 的一次函数。 当 时称 是 的正比例函数。正比例函数是特殊的一次函数。 2.作一次函数的图像:列表取点、描点、联机,标出对应的函数关系式。3.正比例函数图像性质:经过 ; >0时,经过一、三象限; 4.一次函数图像性质:(1)当 >0时, 随 的增大而增大,图像呈上升趋势;当 (2)直线 与轴的交点为 ,与 轴的交点为 。 (3)在一次函数 中: >0, >0时函数图像经过一、二、三象限; >0, 0时函数图像经过一、二、四象限; (4)在两个一次函数中,当它们的 值相等时,其图像平行;当它们的 值不等时,其图像相交;当它们的 值乘积为 时,其图像垂直。4.已经任意两点求一次函数的表达式、根。 数学,人教版的1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)*180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角。 一次函数:y=kx+b(k不等于0) 方程:没啥好复习的,记得检验就行 四边形: 内角:180(n-2) 外角:360° 平行四边形: 性质:对边平行,相等 对角相等 对角线互相平分 中心对称 判定:两组对边分别平行 一组对边平行且相等 两组对角分别相等 对角线互相平分 真命题:一组对边平行,一组对角相等 一组对边平行,一条对角线被平分 (注意:一组对边平行,另一组对边相等的四边形不一定是平行四边形) 矩形:有一个内角为直角的平行四边形 对角线相等的平行四边形 三个角为直角的四边形 共15种证明方法 菱形:一组邻边相等的平行四边形 对角线互相垂直的平行四边形 四边相等的四边形 共23种证明方法 正方形:具有矩形,菱形,平行四边形所有性质 共92种证明方法 梯形: 一组对边平行,另一组对边不平行 等腰梯形:两腰相等 同一底上的底角相等 对角线相等 添辅助线的方法: 1.做两条高 2.做腰的平行线 3.延长两腰交于一点 4.做对角线的平行线 直角梯形:就是有两个直角,可能会构成两个特殊的三角形,一般来说连其中一条对角线。 概率:P=k/n没了我就数学还可以别的就不来误导你了我一个字一个字打了二十分钟那……没复制的原版答案喏。 一、长度的测量: 1、长度的测量是物理学最基本的测量,也是进行科学探究的基本技能。 长度测量的常用的工具是刻度尺。 2、国际单位制中,长度主单位是 m ,常用单位有千米(km),分米(dm),厘米(cm),毫米(mm),微米 (μm),纳米(nm)。 3、主单位与常用单位的换算关系: 1 km=103m 1m=10dm 1dm=10cm 1cm=10mm 1mm=103μm 1m=106μm 1m=109nm 1μm=103nm 单位换算的过程:口诀:“系数不变,等量代换”。 4、长度估测:黑板的长度2.5m、课桌高0.7m、篮球直径24cm、指甲宽度 1cm、铅笔芯的直径1mm 、一只新铅笔长度1.75dm 、手掌宽度1dm 、墨水瓶高度6cm 5、刻度尺的使用规则: A、“选”:根据实际需要选择刻度尺。 B、“观”:使用刻度尺前要观察它的零刻度线、量程、分度值。 C、“放”用刻度尺测长度时,尺要沿着所测直线(紧贴物体且不歪斜)。 不利用磨损的零刻线。(用零刻线磨损的刻度尺测物体时,要从整刻度开始) D、“看”:读数时视线要与尺面垂直。 E、“读”:在精确测量时,要估读到分度值的下一位。 F、“记”:测量结果由数字和单位组成。 (也可表达为:测量结果由准确值、估读值和单位组成)。 练习:有两位同学测同一只钢笔的长度,甲测得结果12.82cm,乙测得结果为12.8cm。 如果这两位同学测量时都没有错误,那么结果不同的原因是:两次刻度尺的分度值不同。如果这两位同学所用的刻度尺分度值都是mm,则乙 同学的结果错误。 原因是:没有估读值。 6、特殊的测量方法: ①测量细铜丝的直径、一张纸的厚度等微小量常用累积法(当被测长度较小,测量工具精度不够时可将较小的物体累积起来,用刻度尺测量之后再求得单一长度) ☆如何测物理课本中一张纸的厚度? 答:数出物理课本若干张纸,记下总张数n,用毫米刻度尺测出n张纸的厚度L,则一张纸的厚度为L/n 。 ☆如何测细铜丝的直径? 答:把细铜丝在铅笔杆上紧密排绕n圈成螺线管,用刻度尺测出螺线管的长度L,则细铜丝直径为L/n。 ☆两卷细铜丝,其中一卷上有直径为0.3mm,而另一卷上标签已脱落,如果只给你两只相同的新铅笔,你能较为准确地弄清它的直径吗?写出操作过程及细铜丝直径的数学表达式。 答:将已知直径和未知直径两卷细铜丝分别紧密排绕在两只相同的新铅笔上,且使线圈长度相等,记下排绕圈数N1和N2,则可计算出未知铜丝的直径D2=0.3N1/N2 mm ②测地图上两点间的距离,园柱的周长等常用化曲为直法(把不易拉长的软线重合待测曲线上标出起点终点,然后拉直测量) ☆给你一段软铜线和一把刻度尺,你能利用地图册估测出北京到广州的铁路长吗? 答:用细铜线去重合地图册上北京到广州的铁路线,再将细铜线拉直,用刻度尺测出长度L查出比例尺,计算出铁路线的长度。 ③测操场跑道的长度等常用轮滚法(用已知周长的滚轮沿着待测曲线滚动,记下轮子圈数,可算出曲线长度) ④测硬币、球、园柱的直径圆锥的高等常用辅助法(对于用刻度尺不能直接测出的物体长度可将刻度尺三角板等组合起来进行测量) ☆ 你能想出几种方法测硬币的直径?(简述) ①、直尺三角板辅助法。 ②、贴折硬币边缘用笔画一圈剪下后对折量出折痕长。③、硬币在纸上滚动一周测周长求直径。 ④、将硬币平放直尺上,读取和硬币左右相切的两刻度线之间的长度。 7、误差: (1)定义:测量值与被测物体的真实值之间的差异叫误差。 误差在任何测量中都存在 (2)产生原因:测量工具 测量环境 人为因素。 (3)减小误差的方法:多次测量求平均值。 用更精密的仪器 (4)误差只能减小而不能 避免 ,通常采用多次测量取平均值的方法来减小误差。而错误是由于不遵守测量仪器的使用规则和主观粗心造成的,是能够避免的。 二、质量: 1、定义:物体所含物质的多少叫质量。 2、质量的理解:固体的质量不随物体的形态、状态、位置、温度 而改变,所以质量是物体本身的一种属性。 3、单位:国际单位制:主单位kg ,常用单位:t g mg 对质量的感性认识:一枚大头针约80mg 一个苹果约 150g 一头大象约 6t 一只鸡约2kg 4、测量: ⑴ 日常生活中常用的测量工具:案秤、台秤、杆秤、天平、戥子、地中衡等,实验室常用的测量工具托盘天平,也可用弹簧测力计测出物重,再通过公式m=G/g计算出物体质量。 ⑵ 托盘天平的使用方法:二十四个字:水平台上, 游码归零, 横梁平衡,左物右砝,先大后小, 横梁平衡.具体如下: ①“看”:观察天平的称量以及游码在标尺上的分度值。 ②“放”: 首先把天平放在水平桌面上(水平台上),用镊子把标尺上的游码拨至左侧零刻度线处。 ③“调”:调节天平横梁两端的平衡螺母使指针指在分度盘的中线处,这时横梁平衡。 ④“称”:把被测物体放在左盘里,用镊子向右盘里加减砝码,并调节游码在标尺上的位置,直到横梁恢复平衡。 ⑤“记”: 记录数据:被测物体的质量=盘中砝码总质量+ 游码在标尺上所对的刻度值 ⑥“收”: 砝码用毕必须放回盒内。 不能用手捏砝码 ⑦注意事项:A 不能超过天平的称量范围 B 保持天平干燥、清洁。 ⑶ 方法:A、直接测量:固。2.七、八年级数学全册的知识点总结
3.初二学期总结
4.初二学期总结(在线=)
5.初二上学期重点考点 所有科目
6.初二上学期数学所有知识点归纳
7.初二上学习知识点总结
8.初二的知识点的总结
9.初二知识总结高分悬赏