初一上册数学第三章知识点

bdqnwqk2年前百科9

1.七年级上册数学第三单元归纳知识点

复习提纲(一) ★扇形统计图:1. 扇形统计图的意义:用整个圆表示总数,用圆内各个扇形的大小表示各部分占总数的百分数。

2. 扇形统计图的特点:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系。3. 从统计图中获取信息:综合观察,联系实际解读出统计图反映的情况,并能做简单的分析、判断。

4. 结合统计图解决问题:根据统计图中提供的数据和题中已知条件,应用百分数的知识,解决题中的问题和实际生活中的问题。★数学广角1. 鸡兔同笼问题的特点:题中有两个或两个以上未知单量,要求根据两个或两个以上未知量的总数量,求出两个单量或两个以上的单量。

2. 鸡兔同笼问题的解题方法:(1)猜测法(2)假设法:先做出某种假设,根据设想进行推算,如果推出的结果与题意矛盾,再做适当调整,找出正确答案。(3)方程解法:设其中一个量为X,根据等量关系式列出方程。

★位置1. 列、行的意义:竖排称为列, 横排称为行。2. 数对的表示:(列、行)★圆一、圆的认识1、半径:连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。

直径:通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。2、圆规画圆的方法:先把圆规的两脚分开,用直尺定好两脚之间的距离(定半径r)。

再把有针尖的一脚固定在一点上(定圆心O)。再有铅笔的一脚旋转一周。

3、圆的特点:1)圆有无数条直径,也有无数条半径。2) 同圆或等圆内,所有的直径都相等,所有的半径也都相等。

3) 同圆或等圆内,直径是半径的2倍,半径是直径的一半,即:d=2r r=d/24) 圆有无数条对称轴,每一条直径所在的直线,都是它的对称轴。5) 圆的位置由圆心决定,大小由半径/直径决定。

6)两端都在圆上的线段中,直径最长。二、圆的周长(化曲为直的推导过程)1、圆周率(π):任意一个圆的周长和它的直径的比值都是一个固定的数,这个比就叫圆周率。

1)圆周率(π)2)π是无限不循环小数2、三组公式d=2rd=c/πr=d/2r=c/2πc=πdc=2πr三、圆的面积(化圆为方的推导过程要了解,书上的例题要看看。)S=π*r的平方S环形=π*R的平方—π*r的平方★百分数一、百分数的意义表示一个数是另一个数的百分之几的数叫做百分数。

百分数也叫做百分比和百分率。二、百分数与分数、小数的互化1.小数变百分数:将小数的小数点向右移动2位(分子*100)。

同时在后面加上“%”(分母*100)。百分数变小数:去“%”,同时小数点左移2位2、分数变百分数:方法一:先把分数转化成小数(即分子除以分母),再把小数转化成百分数。

除不尽时,保留三位小数。方法二:分母是100的因数(如5,10,20,25,50)时,直接把分数转化成分母是100的分数,再写成百分数。

百分数变分数:先写成分母是100的分数,再化简。3. 百分数和分数的不同分数既可以表示两个数之间的关系,也可以表示一个具体的数,而百分数只能表示两个数之间的关系。

四、常用的的求“率”的公式:(课堂上已经做了笔记要求记熟,并会举一反三说出相应的数量关系式。如:合格率=合格的人数÷总人数*100% 合格的人数=总人数*合格率总人数=合格的人数÷合格率)数学复习提纲(二)★百分数(补充添加)1.求一个数比另一个数多或少百分之几的问题:(1)甲比乙多百分之几的问题解题规律:(甲—乙)÷乙=百分之几 或 甲÷乙—1=百分之几(2)求乙比甲少百分之几的问题的解题规律:(甲—乙)÷甲=百分之几 或 1—乙÷甲=百分之几2. (1)求一个数的百分之几是多少的应用题的规律:一个数(单位“1” )*百分率=部分量(2)已知一个数的百分之几是多少,求这个数的应用题的解题规律: 部分量÷百分率=一个数(单位“1”)这里的部分量与百分率要相对应。

3. 折扣:商品按原定价格的百分之几出售,叫折扣。4. 纳税: (1)应纳税额:就是缴纳的税款。

(2)税率:应纳税额与各种收入的比率叫税率。(3)应纳税额=总收入*税率5. 利率三个概念:本金、利息、利率利息=本金*利率*时间★分数乘法1、分数乘整数的意义与计算法则:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算;分数乘整数用分数的分子和整数相乘的积作分子,分母不变。

2、一个数乘分数的意义与计算法则:一个数与分数相乘,可以看作是求这个数的 几分之几是多少。一个数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

3、分数乘加、乘减混合运算的运算顺序和整数的运算顺序相同。4、整数乘法的运算定律(乘法交换律、结合律、分配律)对分数乘法同样适用。

运用乘法的运算定律可以使一些计算简便。5、求一个数的几分之几是多少的问题的解题规律: 一个数(单位“1”)*几分之几=部分量(与几分之几相对应的量)。

6、倒数的意义:乘积是1的 两个数互为倒数。7、求一个数(0除外)的倒数的方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

★分数除法1、分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。2、分数除法的计算法则:甲数除以乙数(0。

2.初一上册数学的第2和3章的知识梳理 一定要全面

一.填空题(每空2分)1. 孔子出生于公元前551年,如果用-551年来表示,那么下列中国历史文化名人的出生年代如何表示?(1)司马迁出生于公元前145年;表示为__________年(2)李白出生于公元701年;表示为_________年2.比-4大的负整数有___________________3.在数轴上距原点5个单位长度的数是_______________4. 比较大小 : ______ ; _______ ; _______ 5.(-20)-(+7)=__________;(-18)-(-10)=__________6.若 ,则 7.平方等于它本身的数是_____________8.若 9.光在真空里的速度约30万千米/秒,即_________米/秒。

(用科学计数法表示)10. 精确到___________,有______个有效数字.二.选择题(每题2分)1. 一定是( )A. 正数 B. 负数 C. 非正数 D. 非负数2.下列各式中错误的是( )A. B. C.-(+6)=-(-6)D.-(+6)=+(-6)3.下面结论正确的是( )A.有理数包括正数和负数 B.有理数包括整数和分数C.两个有理数的绝对值相等,则这两个有理数也相等 D.0是最小的正整数4.计算 所得的结果应该是( )A. B. 4 C. -4 D. 5.用代数式表示“a与-b的差的2倍”是( )A. B. C. D. 6.数0.070961四舍五入保留三个有效数字的近似数是( )A. 0.07 B. 0 . 0 7095 C. 0.0709 D. 0.0710三.计算(每题5分)1. 2. 3. 4。 5. 6。

7. 8。 四.求下列代数式的值(每题4分)1. ,其中 2. ,其中 五.开放性题目(第一题3分,第二题7分)1.定义运算 ,计算3*4的值2.要把面值为1角的人民币换成零钱,现有足够的5分、2分、1分的人民币,请问有多少种换法?。

3.初一数学上册各章知识点框架结构

注意:这是北师大版的数学书 人教版和这也差不多七年级上数学复习提纲第一章 丰富的图形世界1、认识生活中常见的几何体特点:圆柱、圆锥、正方体、长方体、棱柱、球2、知道常见几何体的分类,一共分为三类:球体、柱体(圆柱、棱柱、正方体、长方体)、锥体(圆锥、棱锥)3、平面图形折成立体图形应注意:侧面的个数与底面图形的边数相等。

4、圆柱的侧面展开图是一个长方形;展开图是两个圆形和一个长方形; 圆锥的展开图是一个扇形和一个圆形; 正方体展开图是一个六个小正方形组成的图形; 长方体的展开图是与正方体的类似。(容易考到)5、特殊立体图形的截面图形: (1)长方体、正方形的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形、六边形。

(2)圆柱的截面是:长方形、圆、椭圆。 (3)圆锥的截面是:三角形、圆、椭圆。

(4)球的截面是:圆 6、我们经常把从前面看到的图形叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图。 7、点动成线,线动成面,面动成体。

第二章 有理数1 、正数与负数 在以前学过的0以外的数前面加上负号“—”的数叫负数。 与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。

2 、有理数 (1) 正整数、0、负整数统称整数,正分数和负分数统称分数。 整数和分数统称有理数。

0既不是正数,也不是负数。 (2) 通常用一条直线上的点表示数,这条直线叫数轴。

数轴三要素:原点、方向箭头、单位长度。 在直线上任取一个点表示数0,这个点叫做原点。

(3) 只有符号不同的两个数叫做互为相反数。 特别的:0的相反数是0 (4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

一个正数的绝对值是它本身 一个负数的绝对值是它的相反数; 0的绝对值是0; 两个负数,绝对值大的反而小。 3 、有理数的加减法 (1)有理数加法法则: ①同号两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,取绝对值较大的数符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加和为0。

③一个数同0相加,仍得这个数。 (2) 有理数减法法则:减去一个数,等于加这个数的相反数。

4、有理数的乘除法 (1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

(2) 乘积是1的两个数互为倒数。 (3) 有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

(4) 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0第三章、字母表示数1、用运算符号把数和表示数的字母连接而成的字母叫做代数式。

2、求代数式值要注意:字母的取值必须确保代数式有意义;字母的取值要确保它本身所表示的数量有意义。3、代数式的系数应包括这一项前的符号;如果代数式的某一项只含有字母因数,它的系数就是1或-1,而不是0。

4、同类项所含的字母相同;相同字母的指数也相同。注意:同类项与系数无关,与字母的排列顺序无关;几个常数项也是同类项。

5、合并同类项法则:在合并同类项时,把同类项的系数相加,字母和其指数不变。 第四章 平面图形及位置关系1、直线、射线、线段 (1) 直线、射线、线段的区别:直线没有端点;射线一个端点;线段有两个端点。

(2) 线段公理:两点之间,线段最短。 (3)线段的比较方法:叠和法和度量法。

2、角的度量与表示 角的三种表示方法:用三个大写英文字母表示或用一个大写英文字母表示(如:3、角的比较与运算 (1)角按大小分可分为锐角、直角、钝角、平角、周角。(2)角平分线把一个角分成两个相等的角,角平分线是一条射线。

4、平行线 (1)如何画平行线? (2)平行线的性质1:过直线外一点只有一条直线与已知直线平行; 平行线的性质2:两条直线都与第三条直线平行,那么这两条直线也平行。5、垂直 (1) 如何画垂线? (2) 垂线的性质1:过一点只有一条直线与已知直线垂直。

垂线的性质2:直线外一点与直线上任意一点的连线中,垂线段最短。 垂直的性质3:是点到直线的距离。

第五章 一元一次方程1、从算式到方程 方程是含有未知数的等式。 方程都只含有一个未知数x,未知数x的指数都是1次,这样的方程叫做一元一次方程。

就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。2、等式的性质: (1). 等式两边加(或减)同一个数(或式子),结果仍相等。

(2) 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 3、把等式一边的某项变号后移到另一边,叫做移项。

(要移就得变)4、常用体积公式:长方形的体积=长X宽X 高 ; 正方形的体积=边长X边长X边长 ; 圆柱的体积=底面积X高 ; 圆锥的体积=底面积X高X1/3。第六章生活中的数据1、把一个大于10的数表示成1X10∩的形式(其中1≤a<10,n为正整数),就叫科学计数法。

(从一个数的左边第一个非0数字起。

4.七年级上册数学重点,把所有重要的知识点列出来,要简洁点

初一数学知识点第一章 有理数1正数、负数、有理数、相反数、科学记数法、近似数2数轴:用数轴来表示数3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小 。

5有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加; 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值; 互为相反数的两数相加为零; 一个数加上零,仍得这个数。6有理数的减法(把减法转换为加法) 减去一个数,等于加上这个数的相反数。

7有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同零相乘,都得零。 乘积是一的两个数互为倒数。

8有理数的除法(转换为乘法) 除以一个不为零的数,等于乘这个数的倒数。9有理数的乘方 正数的任何次幂都是正数; 零的任何次幂都是负数; 负数的奇次幂是负数,负数的偶次幂是正数。

10混合运算顺序(1) 先乘方,再乘除,最后加减;(2) 同级运算,从左到右进行;(3) 如果有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。第二章 整式的加减 1 整式:单项式和多项式的统称; 2整式的加减(1) 合并同类项(2) 去括号第三章 一元一次方程1 一元一次方程的认识2 等式的性质 等式两边加上或减去同一个数或者式子,结果仍然相等; 等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。

3 解一元一次方程一般步骤:去分母、去括号、移项、合并同类项、系数化为一第四章 图形认识初步1 几何图形:平面图和立体图2 点、线、面、体3 直线、射线、线段两点确定一条直线;两点之间,线段最短 4 角 角的度量度数 角的比较和运算 补角和余角:等角的补角和余角相等 初一下册第五章 相交线和平行线1 相交线:对顶角相等2 垂线 经过一点有且只有一条直线和已知直线垂直; 连接直线外一点与直线上各点的所有线段中,垂线段最短(垂线段最短)3 平行线 平行公理:经过直线外一点,有且只有一条直线与已知直线平行; 若两直线都与第三条直线平行,那么这两条直线也相互平行; 判定:同位角相等,两直线平行; 内错角相等,两直线平行; 同旁内角互补,两直线平行。 性质:两直线平行,同位角相等,内错角相等,同旁内角互补。

4 命题:判断一件事情的语句5 平移第六章 平面直角坐标系1 有序数对:(a,b)2 平面直角坐标系、原点、横轴、纵轴、象限3简单应用:用坐标表示位置;用坐标表示平移。第七章 三角形1 与三角形有关的边:三角形的边、高、中线、角平分线、稳定性2 与三角形有关的角 内角:三角形的内角和是180度 外角:三角形的一个外角等于与它不相邻的两个内角的和; 三角形的一个外角大于与它不相邻的任何一个内角。

2 多边形 内角:多边形的内角和为(n-2)*180; 外角:多边形的外角和为360度。第八章 二元一次方程组 1 二元一次方程与二元一次方程组的介绍 2 二元一次方程组的解法 代入法 消元法(加减法) 3 二元一次方程组的实际应用第九章 不等式和不等式组 1 不等式及其解集:含有不等关系号的式子; 2 不等式的性质 性质1 不等式的两边加减同一个数或式子,不等号的方向不变; 性质2 不等式两边乘或除以同一个正数,不等号的方向不变; 性质3 不等式的两边乘或除以同一个负数,不等号的方向改变。

3 一元一次不等式在实际问题中的应用 4 一元一次不等式组及其解法:大大取大;小小取小;大于大的,小于小的取两边,大于小的,小于大的去中间。 第十章 实数 1 平方根:正数有两个平方根,它们互为相反数; 零的平方根是零; 负数没有平方根;正数算术平方根是正数; 零的算术平方根是零。

2 立方根:正数的立方根是正数; 负数的立方根是负数; 零的立方根是零。 3 实数:有理数和无理数的统称。

无理数即是无限不循环小数。我也不知道你要多简洁的,这算是比较全面的。

5.初一数学各章知识梳理图

这里有下载地址:初一数学概念 实数: —有理数与无理数统称为实数。

有理数: 整数和分数统称为有理数。 无理数: 无理数是指无限不循环小数。

自然数: 表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。 数轴: 规定了圆点、正方向和单位长度的直线叫做数轴。

相反数: 符号不同的两个数互为相反数。 倒数: 乘积是1的两个数互为倒数。

绝对值: 数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

数学定理公式 有理数的运算法则 ⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。 ⑵减法法则:减去一个数,等于加上这个数的相反数。

⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。 ⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。数学第一章相交线一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。

邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。二、对顶角:是两条直线相交形成的。

两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。对顶角的性质:对顶角相等。

三、垂直1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。其中一条叫做另一条的垂线,它们的交点叫做垂足。

记做a⊥b垂直是相交的一种特殊情形。2、垂线的性质:①过一点有且只有一条直线与已知直线垂直;②连接直线外一点与直线上各点的所有线段中,垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。3、画法:①一靠(已知直线)②二过(定点)③三画(垂线)4、空间的垂直关系四、平行线1、平行线:在同一平面内,不相交的两条直线叫做平行线。

记做a‖b2、“三线八角”:两条直线被第三条直线所截形成的① 同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧。② 内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧。

③ 同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁。3、平行公理:经过直线外一点,有且只有一条直线与这条直线平行平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4、平行线的判定方法① 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;② 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;③ 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;④ 平行于同一条直线的两条直线平行;⑤ 垂直于同一条直线的两条直线平行。5、平行线的性质:①两条平行线被第三条直线所截,同位角相等; ②两条平行线被第三条直线所截,内错角相等; ③两条平行线被第三条直线所截,同旁内角互补。

6、两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。7、命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成。

五平移1、平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。说明:①、平移不改变图形的形状和大小,改变图形的位置;②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离 ”这也是判断一种运动是否为平移的关键。

③图形平移的方向,不一定是水平的2、平移的性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等。

6.【初一上册数学知识点概括人教版的,要短一些】

初一上册数学知识点第一章 有理数1正数、负数、有理数、相反数、科学记数法、近似数2数轴:用数轴来表示数3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小 .5有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值;互为相反数的两数相加为零;一个数加上零,仍得这个数.6有理数的减法(把减法转换为加法)减去一个数,等于加上这个数的相反数.7有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘,都得零.乘积是一的两个数互为倒数.8有理数的除法(转换为乘法)除以一个不为零的数,等于乘这个数的倒数.9有理数的乘方正数的任何次幂都是正数;零的任何次幂都是负数;负数的奇次幂是负数,负数的偶次幂是正数.10混合运算顺序(1) 先乘方,再乘除,最后加减;(2) 同级运算,从左到右进行;(3) 如果有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行.第二章 整式的加减1 整式:单项式和多项式的统称;2整式的加减(1) 合并同类项(2) 去括号第三章 一元一次方程1 一元一次方程的认识2 等式的性质等式两边加上或减去同一个数或者式子,结果仍然相等;等式两边乘同一个数,或除以同一个不为零的数,结果仍相等.3 解一元一次方程一般步骤:去分母、去括号、移项、合并同类项、系数化为一第四章 图形认识初步1 几何图形:平面图和立体图2 点、线、面、体3 直线、射线、线段两点确定一条直线;两点之间,线段最短4 角角的度量度数角的比较和运算补角和余角:等角的补角和余角相等。

7.初一上册数学要点总结,每个单元都要

初一数学概念 实数: —有理数与无理数统称为实数。

有理数: 整数和分数统称为有理数。 无理数: 无理数是指无限不循环小数。

自然数: 表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。 数轴: 规定了圆点、正方向和单位长度的直线叫做数轴。

相反数: 只有符号不同的两个数互为相反数。 倒数: 乘积是1的两个数互为倒数。

绝对值: 数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

一个数加0仍然得这个数。数学定理公式 有理数的运算法则 ⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

⑵减法法则:减去一个数,等于加上这个数的相反数。 ⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。 角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。

数学第一章相交线一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。

二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。

对顶角的性质:对顶角相等。三、垂直1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。

其中一条叫做另一条的垂线,它们的交点叫做垂足。记做a⊥b垂直是相交的一种特殊情形。

2、垂线的性质:①过一点有且只有一条直线与已知直线垂直;②连接直线外一点与直线上各点的所有线段中,垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

3、画法:①一靠(已知直线)②二过(定点)③三画(垂线)4、空间的垂直关系四、平行线1、平行线:在同一平面内,不相交的两条直线叫做平行线。记做a‖b2、“三线八角”:两条直线被第三条直线所截形成的① 同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧。

② 内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧。③ 同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁。

3、平行公理:经过直线外一点,有且只有一条直线与这条直线平行平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。4、平行线的判定方法① 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;② 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;③ 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;④ 平行于同一条直线的两条直线平行;⑤ 垂直于同一条直线的两条直线平行。

5、平行线的性质:①两条平行线被第三条直线所截,同位角相等; ②两条平行线被第三条直线所截,内错角相等; ③两条平行线被第三条直线所截,同旁内角互补。6、两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。

7、命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成。五平移1、平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

说明:①、平移不改变图形的形状和大小,改变图形的位置;②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离 ”这也是判断一种运动是否为平移的关键。③图形平移的方向,不一定是水平的2、平移的性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等。

8.初一上学期数学各章知识点及经典例题

第一册 第一章有理数 1.1正数和负数 以前学过的0以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。 数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义 1.2有理数 1.2.1有理数 正整数、0、负整数统称整数,正分数和负分数统称分数。 整数和分数统称有理数。

1.2.2数轴 规定了原点、正方向、单位长度的直线叫做数轴。 数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。 ⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。 1.2.3相反数 只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。 在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。 一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。 比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。 1.3有理数的加减法 1.3.1有理数的加法 有理数的加法法则: ⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。 两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a 三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。 加法结合律:(a+b)+c=a+(b+c) 1.3.2有理数的减法 有理数的减法可以转化为加法来进行。

有理数减法法则: 减去一个数,等于加这个数的相反数。 a-b=a+(-b) 1.4有理数的乘除法 1.4.1有理数的乘法 有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。 乘积是1的两个数互为倒数。

几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。 两个数相乘,交换因数的位置,积相等。

ab=ba 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。 (ab)c=a(bc) 一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

a(b+c)=ab+ac 数字与字母相乘的书写规范: ⑴数字与字母相乘,乘号要省略,或用“” ⑵数字与字母相乘,当系数是1或-1时,1要省略不写。 ⑶带分数与字母相乘,带分数应当化成假分数。

用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。 一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即 ax+bx=(a+b)x 上式中x是字母因数,a与b分别是ax与bx这两项的系数。

去括号法则: 括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。 括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。

括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。 1.4.2有理数的除法 有理数除法法则: 除以一个不等于0的数,等于乘这个数的倒数。

a÷b=a·(b≠0) 两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

1.5有理数的乘方 1.5.1乘方 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。 正数的任何次幂都是正数,0的任何正整数次幂都是0。

有理数混合运算的运算顺序: ⑴先乘方,再乘除,最后加减; ⑵同极运算,从左到右进行; ⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行 1.5.2科学记数法 把一个大于10的数表示成a*10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。 用科学记数法表示一个n位整数,其中10的指数是n-1。

1.5.3近似数和有效数字 接近实际数目,但与实际数目还有差别的数叫做近似数。 精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。 对于用科学记数法表示的数a*10n,规定它的有效数字就是a中的有效数字。

第二章一元一次方程 2.1从算式到方程 2.1.1一元一次方程 含有未知数的等式叫做方程。 只含有一个未知数(元),未知数的指数。

初一上册数学第三章知识点