电动力学知识点总结

bdqnwqk1年前百科10

1.物理学电动力学应该怎么复习,知识点是什么,

主要是第四和第五章吧 前面的在电磁学中学过 后面相对论也学过 主要是将Maxwell方程在不同的情况下用 静电场是在无电场源地情况下 静磁场是无电流 后面是传播问题 主要是要做题 第二章 第四 章 第六章 第一章重要些吧 1.分离变量法解电势拉普拉斯方程 2.电磁波传波的协振腔和波导管内部的模形式3.相对论当然是洛仑兹变换哈 特别是速度变化 还有就是时间延迟和距离缩短效应 考的多 4.波的辐射就是推迟势问题 我觉得还是把麦克斯韦的方程弄清楚 学电动力学的 要的东西 1.场论 就是矢量计算分析 2.电磁学的基础 麦克斯韦的方程以前都学过 不过是积分形式 现在是微分形式而已 我也是这学期才学的有什么错了的还请见谅。

2.经典电动力学的公式

极化、磁化和传导一般是在电磁场作用下发生的,因此p、M和jf由电磁场(有时还要加上其他因素)确定。确定p、M和jf同电磁场(以及其他因素)之间关系的方程称为电介质的本构方程。电介质的本构方程原则上应可根据电动力学的基本规律和电子、原子核的运动方程以及统计物理的规律推导出来。但这是一个十分复杂的物理问题,并已超出电动力学的范围。在电动力学中,常用一些经验公式来表示本构方程,最简单的经验公式是:

⒁,⒂

即jf和p同E成正比,M与H成正比(因而也与B成正比)。式⒁常称为欧姆定律,N为媒质的电导率。Ⅹ和x分别为媒质的电极化率和磁化率。这些简单的媒质本构方程只在一定范围内适用,超出该范围就需要作修正或用其他的公式代替。下面对式⒁~⒃的主要应用限制作一些说明。

首先,这些公式在N、Ⅹ、x为常数的意义下只适用于静场或变化不太快的场。当场的变化频率较高时,N、Ⅹ和x的值可能随频率改变,开始出现显著变化的频段随着具体情况不同而不同。例如在频率小于107赫的范围,大多数媒质的电极化率基本上与频率无关,但当频率达到无线电超高频段时,它们随着频率的变化逐渐显著。极化率这种变化导致电磁波在媒质中的传播速度随着频率而改变,这种效应称为色散效应。在Ⅹ随频率显著变化的同时,p和E之间还会出现相位差。在某些频率附近,上述相位差以及极化率的大小强烈地变化,并伴随着电磁能被介质强烈吸收。电导率随频率的变化常因导体的不同而有很大差异。对于等离子体,在不高的频段如千赫,N就可能明显地变化;而对于金属,频率从零一直到远红外范围内,N一般都无明显改变。直到电磁波长小到10微米量级时,N才开始显著变化。当N随频率显著变化时,jf和E之间也会出现相位差。极化和磁化的公式⒂和⒃的另一个重要限制是不能应用于铁电和铁磁情况。铁磁质(见铁磁性)是常用的磁性媒质之一。对于铁磁质,M和H之间不是线性关系,M值甚至同该物质的磁化历史有关。铁电介质(见铁电性)的情况与此类似。另外,在强场情况,即使普通的媒质,也会出现非线性现象。当电场超过一定限值时,电介质甚至会被击穿。

其次,各向异性媒质是以上简单的本构方程不能应用的另一领域。以极化为例,对于各向异性介质,p和E之间的关系是⒄

这时p的各分量和E的各分量之间虽然仍有线性关系,但p的方向和E的方向不同。

电磁波在各向异性介质中传播时,常会发生一些复杂的现象,如双折射(见晶体光学)。

欧姆定律式⒁的应用还有其他一些重要的限制。首先,导体中的温差或载流子的化学势差也会在导体中引起传导电流。这种电流的密度与温度梯变或化学势梯度成正比。这些因素在温差电偶、电池内部和半导体界面附近起重要作用。金属间的接触电位差也是自由电子的化学势差所造成的。其次,在低温情况,当载流子平均自由程变得足够大,使电场在自由程范围内已有明显变化时,欧姆定律也不再适用,需要用比较复杂的关系式来代替。超导是欧姆定律不能适用的另一个重要领域,在超导电体中,除了可能有遵从欧姆定律的正常电流外,还可能有超导电流,它要用完全不同的经验规律来描述。

以上的说明大致概括了简单的本构方程在应用上的限制。在电动力学中,处理有媒质的电磁问题时,需要将麦克斯韦方程组和媒质的本构方程联立起来求解。对上面提到的那些特殊情况,须根据其本构方程作特殊研究,其中有的方面甚至发展成为电动力学的专门分支。

在媒质运动的情况,不仅媒质中还会出现新类型的电荷电流,媒质的电磁性质也会不同(见电子论)。此外,由于电磁场还对媒质产生有质动力,媒质的力学运动将和其中的电荷电流以及电磁场的运动变化互相影响,有时可以形成十分复杂的状态,这种情况在等离子体中常常见到。

3.电磁学知识

电磁学是研究电磁和电磁的相互作用现象,及其规律和应用的物理学分支学科。根据近代物理学的观点,磁的现象是由运动电荷所产生的,因而在电学的范围内必然不同程度地包含磁学的内容。所以,电磁学和电学的内容很难截然划分,而“电学”有时也就作为“电磁学”的简称。

早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。

电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。

麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。

电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。

和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。

公元前七世纪

发现磁石

管子(中国) thale(泰勒斯 希腊)

公元前二世纪

静电吸引

西汉初年

1600年

《地磁论》论述磁并导入“电的”electric

William Gilbert(吉尔伯特)

英国女王的御臣

1745年

莱顿瓶

电容器的原形,存贮电

Pieter van musschenbrock

(穆欣布罗克 荷兰莱顿)

Ewald Georg Von Kleit

(克莱斯特 德国)

1747年

电荷守恒定律

(正,负电的引入)

Benjamim Franktin

(富兰克林 美国)

1754年

避雷针

(电的实际应用)

Procopius Dirisch

(狄维施)

1785年

库仑定律

电磁学进入科学行列

Charles Auguste de Coulom

(库仑 法国)

1799年

发明电池

提供较长时间的电流

Alessandro Graf Volta

(伏打 意大利)

1820年

电流的磁效应

(电产生磁)

安培分子电流说

毕奥-萨伐尔定律

Hans Chanstan Oersted

(奥斯特 丹麦)

Andre Marie Ampere

(安培 法国)

Jean-Baptute Biot,Felix Savart

(毕奥,萨伐尔)

1826年

欧姆定律

Georg Simon ohm(欧姆)

1831年

电磁感应现象

(磁产生电)

Michael Faraday

(法拉第 英国)

1834年

楞次定律

楞次

1865年

麦克斯韦方程组

建立了电磁学理论,

预言了电磁波

Maxwell(麦克斯韦)

1888年

实验证实电磁波存在

Heinrich Hertz

(赫兹 德国)

1896年

光速公式

Hendrik Anoen Lorentz

(洛仑兹)

谢谢

4.电动力学需要用到哪些数学物理知识,哪些教材里有

这取决于你看哪个人写的电动力学。

国内一般用的郭硕宏《电动力学》,我们学校用叶邦角自编的《电磁学和电动力学》(吐槽)。比较推荐的参考书目有1、朗道第二卷《场论》1~9章(强烈推荐);2、Jackson《An introduction to Electrodynamics》.;数学推荐:高数、线性代数就不推荐了,都可以!数学物理方法梁昆淼《数学物理方法》第1到10章、柯朗·希尔伯特《数学物理方法(卷一)》(慎用!)一、国内教材国内的电动力学学习前主要需要看电磁学的1、静电场,知道高斯定律并能熟练推导相关模型;2、静磁场,知道Biot-savart定律并能熟练推导;3、静磁场的安培环路定律并能熟练推导相关模型;4、法拉第电磁感应定律并能熟悉推导相关模型;5、极化电荷及其介电函数理论;6、磁化电流及其相关模型的熟练推导;7、Maxwell方程组及其推导(尤其是位移电流的引入部分)。

但并不是说电磁学就这么点内容,电磁学还有迈斯纳效应、BCS唯象理论等等你需要学习数学物理方法和矢量分析的内容,包括但不限于1、矢量分析;2、复变函数论;3、积分变换(Laplace变换和Fourier变换);4、偏微分方程(方程的建立和分离变量法);5、特殊函数论(勒让德函数、贝塞尔函数、黎曼zeta函数等);6、线性代数(包括线性变换和二次型、双线型)。二、国外教材因为国外的电动力学都是讲场论的,所以你不需要知道电磁学的任何内容。

但你必须先学会1、分析力学(包括变分法推导正则方程、哈密顿理论、哈密顿-雅可比方程);2、狭义相对论(包括相对论时空观和相对论力学)。数学必须会1、基本的变分法;2、微积分及其外微分形式;3、基本的张量分析(以爱因斯坦求和约定形式的);4、复变函数;5、积分变换;6、偏微分方程;7、特殊函数。

以上是我的想法。

5.力学知识概括

定义:力是物体之间的相互作用。

理解要点: (1) 力具有物质性:力不能离开物体而存在。 说明:①对某一物体而言,可能有一个或多个施力物体。

②并非先有施力物体,后有受力物体 (2)力具有相互性:一个力总是关联着两个物体,施力物体同时也是受力物体,受力物体同时也是施力物体。 说明:①相互作用的物体可以直接接触,也可以不接触。

②力的大小用测力计测量。 (3)力具有矢量性:力不仅有大小,也有方向。

(4)力的作用效果:使物体的形状发生改变;使物体的运动状态发生变化。 (5)力的种类: ①根据力的性质命名:如重力、弹力、摩擦力、分子力、电磁力、核力等。

②根据效果命名:如压力、拉力、动力、阻力、向心力、回复力等。 说明:根据效果命名的,不同名称的力,性质可以相同;同一名称的力,性质可以不同。

重力 定义:由于受到地球的吸引而使物体受到的力叫重力。 说明:①地球附近的物体都受到重力作用。

②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。 ③重力的施力物体是地球。

④在两极时重力等于物体所受的万有引力,在其它位置时不相等。 (1)重力的大小:G=mg 说明:①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。

②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。 ③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。

(2) 重力的方向:竖直向下(即垂直于水平面) 说明:①在两极与在赤道上的物体,所受重力的方向指向地心。 ②重力的方向不受其它作用力的影响,与运动状态也没有关系。

(3)重心:物体所受重力的作用点。 重心的确定:①质量分布均匀。

物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。

②质量分布不均匀的物体的重心与物体的形状、质量分布有关。 ③薄板形物体的重心,可用悬挂法确定。

说明:①物体的重心可在物体上,也可在物体外。 ②重心的位置与物体所处的位置及放置状态和运动状态无关。

③引入重心概念后,研究具体物体时,就可以把整个物体各部分的重力用作用于重心的一个力来表示,于是原来的物体就可以用一个有质量的点来代替。 弹力 (1) 形变:物体的形状或体积的改变,叫做形变。

说明:①任何物体都能发生形变,不过有的形变比较明显,有的形变及其微小。 ②弹性形变:撤去外力后能恢复原状的形变,叫做弹性形变,简称形变。

(2)弹力:发生形变的物体由于要恢复原状对跟它接触的物体会产生力的作用,这种力叫弹力。 说明:①弹力产生的条件:接触;弹性形变。

②弹力是一种接触力,必存在于接触的物体间,作用点为接触点。 ③弹力必须产生在同时形变的两物体间。

④弹力与弹性形变同时产生同时消失。 (3)弹力的方向:与作用在物体上使物体发生形变的外力方向相反。

几种典型的产生弹力的理想模型: ① 轻绳的拉力(张力)方向沿绳收缩的方向。注意杆的不同。

② 点与平面接触,弹力方向垂直于平面;点与曲面接触,弹力方向垂直于曲面接触点所在切面。 ③ 平面与平面接触,弹力方向垂直于平面,且指向受力物体;球面与球面接触,弹力方向沿两球球心连线方向,且指向受力物体。

(4)大小:弹簧在弹性限度内遵循胡克定律F=kx,k是劲度系数,表示弹簧本身的一种属性,k仅与弹簧的材料、粗细、长度有关,而与运动状态、所处位置无关。其他物体的弹力应根据运动情况,利用平衡条件或运动学规律计算。

摩擦力 (1) 滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。 说明:①摩擦力的产生是由于物体表面不光滑造成的。

②摩擦力具有相互性。 ⅰ滑动摩擦力的产生条件:A.两个物体相互接触;B.两物体发生形变;C.两物体发生了相对滑动;D.接触面不光滑。

ⅱ滑动摩擦力的方向:总跟接触面相切,并跟物体的相对运动方向相反。 说明:①“与相对运动方向相反”不能等同于“与运动方向相反” ②滑动摩擦力可能起动力作用,也可能起阻力作用。

ⅲ滑动摩擦力的大小:F=μFN 说明:①FN两物体表面间的压力,性质上属于弹力,不是重力。应具体分析。

②μ与接触面的材料、接触面的粗糙程度有关,无单位。 ③滑动摩擦力大小,与相对运动的速度大小无关。

ⅳ效果:总是阻碍物体间的相对运动,但并不总是阻碍物体的运动。 ⅴ滚动摩擦:一个物体在另一个物体上滚动时产生的摩擦,滚动摩擦比滑动摩擦要小得多。

(2)静摩擦力:两相对静止的相接触的物体间,由于存在相对运动的趋势而产生的摩擦力。 说明:静摩擦力的作用具有相互性。

ⅰ静摩擦力的产生条件:A.两物体相接触;B.相接触面不光滑;C.两物体有形变;D.两物体有相对运动趋势。 ⅱ静摩擦力的方向:总跟接触面相切,并总跟物体的相对运动趋势相反。

说明:①运动的物体可以受到静摩擦力的作用。 ②静摩擦力的方向可以与运动方向相同,可以相反,还可以成任一夹角θ。

③静摩擦力可以是阻力也可以是动力。 ⅲ静摩擦力的。

电动力学知识点总结