航空知识4

bdqnwqk2年前百科14

1.中国航空知识简介

中国古代劳动人民就多次尝试飞上天但未成功。

中国的竹蜻蜓是飞机螺旋桨和直升机旋翼的前身。传入欧洲后,一直被称为“中国陀螺”。

风筝和滑翔机原理相似,在我国唐朝时期就将风筝用于军事。五代时,莘七娘曾做树脂灯放飞于空中作为信号。

有书载是诸葛孔明发明的叫孔明灯。无论怎样,原始热气球出现在我国。

火药的发明在古代用于军事上制成二级火箭神火飞鸦及火龙出水,是现代火箭的前身。 汉代的“卧褥香炉”内置燃香,不论是怎样滚动都不会洒出来。

其原理与今天飞机、导弹用的陀螺仪中万向支架原理完全一样。 早期飞机中,旅美青年冯如是我国第一个航空先驱者。

12岁由广东漂泊到美旧金山,边打工边学习,最终成为一名工程师。1906年23岁的冯如决心制造飞机,并得到孙中山的鼓励与支持,在1910年制造成一架双翼飞机. 同年10月参加了在旧金山举行的国际飞机比赛,飞行高度200米,时速100公里,绕海湾飞行一圈,距离约为30公里,成绩为全场之冠,荣获国际飞行协会优等证书。

美争相聘请传授飞行技术,但冯如谢绝一切邀请,毅然返回祖国。1911年1月在广州成立“广东飞行器公司”。

不幸在1913年一次飞行表演中,飞机失速下坠身亡,时年28岁。他如一株美丽的蒲公英一样,把飞行的种子撒落在祖国的土地上。

同时期的另一名华侨青年21岁的谭根,在万国飞机制造大会上获水上飞机冠军。1915年6月在广州的表演打破水上飞机飞行高度记录,飞到1800米的高度。

后来放弃了航空活动。 北洋政府于1913年在北京南苑建立航空学校,附设有飞机修理厂。

以后又在清河设立修理厂。1914年南苑飞机修理厂厂长潘世忠和飞行教官厉汝各设计制造一架飞机。

潘世忠设计制造的飞机,发动机装在机身后部,机首装一挺机枪,取名“枪车”。但没有成批生产。

旧中国航空工程人才的培养始于清末民初,当时有少数留学生负笈海外,学习航空技术。三十年代后渐多,到四十年代以近千人。

留学生中不乏学有成就造诣高深的人,曾在美国波音公司初创时担任过飞机设计师,后归国经办航空工厂的王助,高亚音速飞机气动设计所用卡门-钱学森公式的创始人之一钱学森,创立叶轮机械三元流理论的吴仲华。最早训练航空工程人才的学校,是1918年在福建马尾建立的海军飞潜学校。

30年代后,陆续有北洋大学、中央大学、厦门大学、清华大学、交通大学、浙江大学、云南大学、四川大学、西北工学院设立了航空工程系等。到1949年底,航空系科毕业生约1000人。

后来设立了航空航天大学用以培养专门人才。 从1913年清政府在北京南苑设厂到1949年没有建立独立产业部门的航空工业。

40年代末期主要是从事飞机的修理,1950年周总理召集研究航空工业的建设。战争时期的飞机修理厂为中国的航空工业发展奠定了坚实的基础。

1953年建起第一批骨干企业,南昌飞机厂、株州发动机厂、沈阳飞机厂、沈阳航空发动机厂。1954年7月11日第一架国产飞机初教5完成试飞,8月末开始大批生产。

1955年2月开始研制歼5,次年7月19日首架升空试飞,8月2日试飞结束,9月9日向世界宣布中国新型喷气式飞机问世。 1956年起尝试自行设计飞机,首先建造了超音速风洞。

1958年5月完成初教6设计,8月首架试飞,1960年12月完成鉴定试飞,次年改用国产发动机并投入成批生产。这是完全靠自己力量设计成功并投入大批生产的第一种飞机。

到1960年中国的航空工业以初具规模,能够成批生产歼击机、教练机、直升机和小型运输机,并开始自行设计。 1969年7月5日自行设计的高空高速歼击机歼8首飞成功。

歼8Ⅰ于1980年5月总装完成,6月25日试飞失败,次年4月24日飞上蓝天,10月第二架上天,1985年7月27日批准定型。飞机上装有204全雷达等11项电子设备;武器改装23-Ⅲ航炮,4枚霹雳2乙导弹,4组火箭。

歼8、歼8Ⅰ飞机的研制成功,标志着中国自行设计的歼击机达到一个新水平。1984年6月自行研制的歼8Ⅱ飞机首飞,并成为新一代歼击机。

飞机的心脏——航空发动机 活塞5、活塞6、涡喷5、涡喷7、涡喷8发动机均是根据前苏联提供的技术资料试制完成的。 第一台自行设计的发动机喷发1A是由沈阳航空发动机设计室吴大观、虞光裕在1957年完成,次年投入使用。

随后还设计了红旗2发动机,装于东风107高空超音速歼击机;涡喷6甲装于强5Ⅰ强击机;设计了涡喷7甲-歼8的动力装置,1985年同歼8机一起获国家科技进步特等奖。 贵州航空发动机长设计涡喷7乙,1982年成批生产并出口,北京航空学院设计涡喷11,装用于无侦5高空无人驾驶照相侦察机,1980年通过鉴定,填补了一项空白。

涡轮螺旋桨发动机为直升机动力装置。涡轮轴发动机的使用,使设计大型直升机成为可能。

从60年代中期开始,以研制生产了涡轮5、涡轴6、涡轮8等发动机。 中国的航空工业经历了修理、仿制、自行设计三个阶段。

轰炸机、强击机、无人机都完成了自行设计。轰炸机有轰5及其改型轰6,强击机有强5及其改型。

机载系统设备 机载系统有传统导航仪表,导航定位设备,飞行控制系统,电源系统,环境控制系统和防护救生系统,火力控制系统和悬挂发射装置,液压。

2.关于航空航天的知识

航空航天基本知识 我们知道,人类的家园是地球,而地球的外面覆盖着一层大气,如果没有水和大气以及适宜的温度和环境,生物是很难生存的。

通常,在人们的眼中,“天”很高,要想冲出厚厚的大气层,进入太空非常非常困难。其实,与地球相比,大气层是很稀薄的。

人们知道,地球的直径大约为12700千米,而大气层的厚度只有100 -800千米。如果将地球比作一个苹果的话,那么,我们可以把大气层看成是苹果的皮,可这层“苹果皮”本身却是变化多端的。

比如最贴近地球表面的一层,叫作对流层,其高度从海平面起一直到大约11000米止,其顶界是随纬度、季节等情况而变化的,在赤道地区为17000米,在中纬度地区(如北京、天津地区)为11000米,在地球两极地区则为7000-8000米。 对流层的主要特点是,空气温度随着高度的增加而降低,因而又称为变温层,平均而言高度每上升1000米,气温约下降6.5℃。

与此同时,气压也随高度的增加而降低。由于地球引力的作用,在 5500米的高度范围内,包含了大气总量的一半,而整个对流层,大约占了全部大气质量的四分之三。

由于几乎所有的水蒸气都集中在这一层大气内,再加上大量的微粒,因而,这里也是风云变幻最为剧烈的一层。从大约11000米的高度起,直到30500米左右,其大气温度基本不变,平均保持在-56.5℃上下,因此被称为同温层(实际情况是:在25000米以下,气温随高度的升高而上升。

在同温层顶,气温约升至-43至-33℃)。同温层的气温之所以具有这样的特点,是因为该层大气离地球表面较远,受地面温度的影响较小,并且其顶部存在着臭氧,能够直接吸收太阳的辐射热等。

同温层所包含的空气质量大约占整个大气的四分之一弱。在这一层大气内,没有上下对流,只有水平方向的风,所以又叫作平流层。

另外,该层大气几乎不存在水蒸气,基本上没有云、雾、雨、雹等气象变化的现象,这对飞行器的平稳飞行是非常有利的。不过,由于空气密度很小,飞机在这一高度层上又不适宜机动飞行。

人类的航空活动差不多都集中在对流层和同温层内。为了保证飞机和发动机的工作效率,飞机飞行的高度一般不超过30千米的界限。

从30千米到80-100千米的高度范围,被称为中间层。这一层空气的特点是:以 45千米为界,温度先升后降。

由于大量的臭氧存在,其气温先由同温层顶的-33℃提高到17至40℃左右;从45千米起,随着高度的升高,气温又开始下降,一直降低到-65.5℃至-113℃。 中间层的空气已经很稀薄了,其空气质量约只占整个大气层的1/3000。

在80千米高度上,空气的密度只有地面的五万分之一;而在100千米高度上,空气的密度仅为地面的一千万分之八。由于空气非常稀薄,并且气体开始呈现电离现象,因此,人们一般把飞行高度达到80—100千米的飞行器,看成是不依靠大气飞行的航天器。

1967年10月,美国试飞员约瑟夫·沃尔克驾驶X-15A火箭飞机飞出了 7297千米/小时的惊人速度,创造了有人驾驶飞机速度的世界纪录。而且,他还曾多次飞到了80千米以上的高空,成为美国第一个“驾驶飞机的宇航员”。

按照美国航空航天局规定:飞行高度超过80千米的飞行员即可称为宇航员. 在中间层之上直至800千米高空的范围,称作电离层。其特点是:含有大量的带正电或负电的离子,空气具有导电性。

并且,其温度随高度的增大而迅速升高,在200千米高度时,气温可达400℃。所以,这里又被人们叫作“暖层”。

在电离层顶端之外,便是大气的最外层——“散逸层”了。由于地球引力的减弱,气体分子和等离子体与地球已若即若离。

电离层和散逸层的空气密度极低,对太空飞行器的影响已很小,因此,人类大部分的航天活动都是在它们之内(或之外)进行的。 航空与航天的区别: 航空与航天是人们经常接触的两个技术名词,两者虽然仅一字之差,却被称为两大技术门类,这是为什么呢? 您稍加注意即可发现,航空技术主要是研制军用飞机、民用飞机及吸气发动机,航天技术主要是研制无人航天器、载人航天器、运载火箭和导弹武器,最能集中体现两者成果的是航空器和航天器。

从航空器与航天器的重大区别上即可看出两个技术领域的显著差异。 第一,飞行环境不同。

所有航空器都是在稠密大气层中飞行的,其工作高度有限。现代飞机最大飞行高度也就是距离地面30多千米。

即使以后飞机上升高度提高,它也离不开稠密大气层。而航天器冲出稠密大气层后,要在近于真空的宇宙空间以类似自然天体的运动规律飞行,其运行轨道的近地点高度至少也在100千米以上。

对在运行中的航天器来讲,还要研究太空飞行环境。 第二,动力装置不同。

航空器都应用吸气发动机提供推力,吸收空气中的氧气作氧化剂,本身只携带燃烧剂。而航天器其发射和运行都应用火箭发动机提供推力,既带燃烧剂又带氧化剂。

吸气发动机离开空气就无法工作,而火箭发动机离开空气则阻力减小有效推力更大。吸气发动机包括燃烧剂箱在内都可随飞机多次使用,而发射航天器的运载火箭都是一次性使用。

虽然航天飞机的固体助推器经过回收可以重复使用20次,其轨道器液体火箭发动机可以重复使。

3.中国航天手抄报资料

1970年4月24日,中国第一颗人造地球卫星“东方红一号”用长征一号运载火箭发射成功,《东方红》乐曲传遍全世界,中国从此迈入了探索太空的时代。

1975年11月26日,长征二号运载火箭成功发射返回式卫星,卫星在轨运行3天后,按预定计划顺利回收,中国成为世界上第三个掌握卫星回收技术的国家。从20世纪70年代开始,利用返回式卫星遥感所获得的遥感信息,在国土普查、资源勘测、地形绘制、灾害预报等方面发挥重要的作用。

1984年4月8日,长征三号运载火箭成功发射东方红二号试验通信卫星,标志中国航天已掌握了使用氢氧发动机以及在失重条件下两次点火的技术,成为世界上第五个能够研制和发射同步静止轨道卫星的国家。

1985年10月25日,中国政府宣布长征系列运载火箭承担国际搭载和卫星发射业务,从此中国航天步入国际市场。自1990年4月7日发射亚洲一号通信卫星之后,至2000年,中国共将26颗外国卫星成功发射升空。

1988年9月7日,长征四号运载火箭成功发射风云一号气象卫星,风云一号是中国第一颗太阳同步极地轨道气象卫星,在气象观测,海洋捕捞,农业估产,中长期天气预报和气象研究中发挥了巨大的作用。

1992年8月14日,长征二号捆绑式运载火箭成功发射由美国休斯公司研制的澳大利亚“澳赛特BI”通信卫星。长二捆运载火箭在大推力发动机、大型卫星整流罩、火箭捆绑技术等方面取得重大成果。中国航天已具备发射各种大载荷商用卫星的能力。

1997年5月12日,长征三号甲运载火箭成功发射东方红三号通信卫星,中国大容量通信卫星技术实现了重大突破。

1997年8月20日,长征三号乙运载火箭成功发射菲律宾马部海通信卫星。长征三号乙采用大推力氢氧发动机,使其同步转移轨道运载能力达到5吨,增强了中国在国际商业卫星发射市场上的竞争能力。

1999年10月14日,长征四号乙运载火箭成功发射由中国和巴西合作研制的资源一号卫星,其综合性能达到国际先进水平,它也开创发展了中国在航天高科技领域成功合作的典范。

1999年11月20日,新型长征运载火箭成功发射神舟号试验飞船,11月21日飞船顺利回收,中国载人航天技术实现历史性的突破,是中国航天史上的里程碑。

2001年1月10日,中国成功发射“神舟”2号试验飞船,按照预定计划在太空完成空间科学和技术试验任务后,于1月16日在内蒙古中部地区准确返回。

2002年3月25日,中国成功发射“神舟”3号试验飞船,环绕地球飞行了108圈后,于4月1日准确降落在内蒙古中部地区。

2002年12月30日,中国成功发射“神舟”4号飞船。

2003年10月15日至16日,中国成功进行了首次载人航天飞行,中国航天员杨利伟乘坐神舟五号载人飞船在太空运行十四圈,历时二十一小时二十三分,顺利完成各项预定操作任务后,安全返回主着陆场。

2005年10月12日至16日,中国成功进行了第二次载人航天飞行,中国航天员费俊龙、聂海胜乘坐神舟六号载人飞船在太空运行七十六圈,历时四天十九小时三十三分,实现多人多天飞行并安全返回主着陆场。

2007年10月24日18时05分,嫦娥一号探测器从西昌卫星发射中心由长征三号甲运载火箭成功发射。是中国自主研制、发射的第一个月球探测器

2008年4月25日23时35分,中国首颗数据中继卫星“天链一号01星”在西昌卫星发射中心由“长征三号丙”运载火箭成功发射升空。

2008年9月25日21时10分神舟7号发射,9月28日安全返回主着陆场

4.关于航空航天的知识

1957年10月4日

前苏联发射世界第一颗人造地球卫星。半年后,美国的人造卫星上天

1959年9月12日

前苏联发射“月球”2号探测器,为世界上第一个撞击月球表面的航天器

1961年4月12日

前苏联宇航员加加林成为世界第一位飞入太空的人

1969年7月20日

美国宇航员阿姆斯特朗乘坐“阿波罗”11号飞船,成为人类踏上月球的第一人

1970年12月15日

前苏联“金星”7号探测器首次在金星上着陆

1971年4月9日

前苏联“礼炮”1号空间站成为人类进入太空的第一个空间站。两年后,美国将“天空实验室”空间站送入太空

1971年12月2日

前苏联“火星”3号探测器在火星表面着陆。5年后,美国的“海盗”火星探测器登陆火星

1981年4月12日

世界第一架航天飞机---美国“哥伦比亚”号航天飞机发射成功

1986年1月28日

美国航天飞机“挑战者”号在升空73秒后爆炸

1986年2月20日

前苏联发射“和平”号空间站,服役已经超期8年,至今仍在运行,是目前最成功的人类空间站

1993年11月1日

美、俄签署协议,决定在“和平”号空间站的基础上,建造一座国际空间站,命名为阿尔法国际空间站

我国航空航天大事件:

1956年10月8日,我国第一个火箭导弹研究机构———国防部第五研究院成立。

1970年4月24日,长征一号运载火箭在酒泉卫星发射中心成功地发射了东方红一号卫星,我国成为世界上第三个独立研制和发射卫星的国家。

1975年11月26日,长征二号运载火箭在酒泉卫星发射中心成功地发射了我国第一颗返

回式科学试验卫星,并于3天后成功回收。

1984年4月8日,长征三号运载火箭在西昌卫星发射中心成功地发射了我国第一颗地球同步轨道卫星———东方红二号试验通信卫星。

1990年4月7日,中国用自行研制的长征三号运载火箭在西昌卫星发射中心成功地发射了亚洲一号通信卫星,这是中国长征系列运载火箭首次发射国外卫星,使我国在世界航天商业发射服务领域占有了一席之地。

1999年10月,我国和巴西联合研制的第一颗地球资源卫星顺利升空,并正常运行,这是我国首次在空间技术领域进行的全面国际合作。

2003年10月15日,“神舟”五号飞船成功发射,并于2003年10月16日圆满回收,使我国成为世界上第三个独立掌握载人航天技术的国家。

2003年12月和2004年7月,我国与欧洲空间局联合研制并发射了“探测一号”和“探测二号”科学卫星,“地球空间双星探测计划”取得圆满成功。

2004年1月23日,我国绕月探测工程正式由国务院批准立项。

2005年10月12日,神六成功发射.

5.关于中国航空的知识

中国航天事业自1956年创建以来,经历了艰苦创业、配套发展、改革振兴和走向世界等几个重要时期,迄今已达到了相当规模和水平:形成了完整配套的研究、设计、生产和试验体系;建立了能发射各类卫星和载人飞船的航天器发射中心和由国内各地面站、远程跟踪测量船组成的测控网;建立了多种卫星应用系统,取得了显著的社会效益和经济效益;建立了具有一定水平的空间科学研究系统,取得了多项创新成果;培育了一支素质好、技术水平高的航天科技队伍。

中国航天事业是在基础工业比较薄弱、科技水平相对落后和特殊的国情、特定的历史条件下发展起来的。中国独立自主地进行航天活动,以较少的投入,在较短的时间里,走出了一条适合本国国情和有自身特色的发展道路,取得了一系列重要成就。

中国在卫星回收、一箭多星、低温燃料火箭技术、捆绑火箭技术以及静止轨道卫星发射与测控等许多重要技术领域已跻身世界先进行列;在遥感卫星研制及其应用、通信卫星研制及其应用、载人飞船试验以及空间微重力实验等方面均取得重大成果。 空间技术 1. 人造地球卫星。

中国于1970年4月24日成功地研制并发射了第一颗人造地球卫星“东方红一号”,成为世界上第五个独立自主研制和发射人造地球卫星的国家。截至2000年10月,中国共研制并发射了47颗不同类型的人造地球卫星,飞行成功率达90%以上。

目前,中国已初步形成了四个卫星系列——返回式遥感卫星系列、“东方红”通信广播卫星系列、“风云”气象卫星系列和“实践”科学探测与技术试验卫星系列,“资源”地球资源卫星系列也即将形成。中国是世界上第三个掌握卫星回收技术的国家,卫星回收成功率达到国际先进水平;中国是世界上第五个独立研制和发射地球静止轨道通信卫星的国家。

中国的气象卫星、地球资源卫星主要技术指标已达到二十世纪九十年代初期的国际水平。近几年来,中国研制并发射的6颗通信、地球资源和气象卫星投入使用后,工作稳定,性能良好,产生了很好的社会效益和经济效益。

2. 运载火箭。中国独立自主地研制了12种不同型号的“长征”系列运载火箭,适用于发射近地轨道、地球静止轨道和太阳同步轨道卫星。

“长征”系列运载火箭近地轨道最大运载能力达到9200千克,地球同步转移轨道最大运载能力达到5100千克,基本能够满足不同用户的需求。自1985年中国政府正式宣布将“长征”系列运载火箭投入国际商业发射市场以来,已将27颗外国制造的卫星成功地送入太空,在国际商业卫星发射服务市场中占有了一席之地。

迄今,“长征”系列运载火箭共实施了63次发射;1996年10月至2000年10月,“长征”系列运载火箭已连续21次发射成功。 3. 航天器发射场。

中国已建成酒泉、西昌、太原三个航天器发射场,并圆满完成了各种运载火箭的飞行试验和各类人造卫星、试验飞船的发射任务。中国航天器发射场既可完成国内发射任务,又具有完成为国际商业发射服务和开展其他国际航天合作的能力。

4. 航天测控。中国已建成完整的航天测控网,包括陆地测控站和海上测控船,圆满完成了从近地轨道卫星到地球静止轨道卫星、从卫星到试验飞船的航天测控任务。

中国航天测控网已具备国际联网共享测控资源的能力,测控技术达到了世界先进水平。 5. 载人航天。

中国于1992年开始实施载人飞船航天工程,研制了载人飞船和高可靠运载火箭,开展了航天医学和空间生命科学的工程研究,选拔了预备航天员,研制了一批空间遥感和空间科学试验装置。1999年11月20日至21日,中国成功地发射并回收了第一艘“神舟”号无人试验飞船,标志着中国已突破了载人飞船的基本技术,在载人航天领域迈出了重要步伐。

空间应用 中国重视研制各种应用卫星和开发卫星应用技术,在卫星遥感、卫星通信、卫星导航定位等方面取得了长足发展。中国研制和发射的卫星中,遥感卫星和通信卫星约占71%,这些卫星已广泛应用于经济、科技、文化和国防建设的各个领域,取得了显著的社会效益和经济效益。

国家有关部门还积极利用国外各种应用卫星开展应用技术研究,取得了很好的应用效果。 1. 卫星遥感。

中国从二十世纪七十年代初期开始利用国内外遥感卫星,开展卫星遥感应用技术的研究、开发和推广工作,在气象、地矿、测绘、农林、水利、海洋、地震和城市建设等方面得到了广泛应用。目前,国家遥感中心、国家卫星气象中心、中国资源卫星应用中心、卫星海洋应用中心和中国遥感卫星地面接收站等机构,以及国务院有关部委、部分省市和中国科学院的卫星遥感应用研究机构已经建立起来。

这些专业机构利用国内外遥感卫星开展了气象预报、国土普查、作物估产、森林调查、灾害监测、环境保护、海洋预报、城市规划和地图测绘等多方面、多领域的应用研究工作。特别是卫星气象地面应用系统的业务化运行,极大地提高了对灾害性天气预报的准确性,使国家和人民群众的经济损失有了明显的减少。

2. 卫星通信。中国从二十世纪八十年代中期开始利用国内外通信卫星,发展卫星通信技术,以满足日益增长的通信、广播和教育事业的发展需求。

在卫星固定通信业务方。

6.何为二维雷达

呵呵!随便说说! 楼主所说的二维雷达,大概就是二维有源像元光谱激光雷达了。

我没看近几期航空知识,所以不是很确定。 四代机最注重的是隐身性能,通过外形设计,可以很好的实现正面雷达反射截面积的缩减,F-22的雷达反射截面积只有实际截面积的5%(一说2%)。

但这些都是在忽视了侦查火控雷达的前提下的。须知我们看到的战斗机尖尖的头并不是金属的,而是合成碳纤维或玻璃钢的,因为那里面装着机载侦察及火控雷达。

做成金属的会屏蔽电磁波信号的发出及接收。 但同样,你不屏蔽自己的电磁波发出和接收,也就不屏蔽对方的电磁波进入雷达罩并反射出去,所以,机载雷达本身就是一个很难处理的雷达反射截面积目标。

那么美国是怎么办的呢? 首先,早期的F-117根本就没装雷达。所以F-117必须在夜幕的掩护下,按照既定路线,在己方空军开辟空中安全走廊或对方空军基本丧失升空作战能力的前提下,实施手术刀打击。

所以才博得夜鹰的外号,同时由于较高的维护成本和有限的战术用途而退役。 而F-22也没好到哪去,F-22的确安装了功能强大的有源相控阵雷达,但为了避免平面阵列天线被对方发现,这座雷达在平时是不开机的,而且还有个内层金属雷达罩罩着,只有空战,格斗的时候,金属雷达罩打开,把雷达天线漏出来后,雷达才开机工作。

所以,四代机面临一个突出的问题-导航!雷达都不能开的情况下,一般也需要保持无线电静默,所以这时无法依赖地面引导;而惯性导航的误差是很大的,对于强调超音速巡航和精确打击的今天,起始的时候0。 5度的经纬度误差,会导致最后几百米甚至上千米的误差,这是不能接受的,那有没有什么即不让对方发现,又能精确导航的设备呢? 有!这就是激光雷达!众所周知激光有良好的方向性和可识别性,不易受到干扰,所以其回波无需一个大个平板天线接收。

早期激光雷达已广泛应用于地质遥感勘测等领域。 另外现代冷激光源也不会给飞机造成额外的红外负担,而且激光本身用于测距是非常精确的,所以,人们想到了利用激光进行导航,这就有了二维有源像元光谱激光雷达(TAPSL)。

美国喷气推进实验室首先提出了二维有源像元光谱激光雷达的概念并付诸实施。该雷达通过激光照射后的反射光谱分析,可以获取地形或其它目标的空间、光谱及时间分辨信息。

这种二维有源像元光谱激光雷达安装于四代机平台上,被用来收集与地质地形、生物目标有关的数据,在数据处理计算机的作用下,会将激光反射光谱进行成像,然后与本机携带的地形匹配计算机存储的数据进行比对,配合惯性导航,就能在主雷达不开机的前提下实现精确导航和地形规避了。 呵呵! 。

航空知识4

标签: 航空知识