五年级数学黑板报小知识

bdqnwqk2年前百科8

1.五年级的数学手抄报内容

1画些关于科技的图2有一位老人,他有三个儿子和十七匹马。

他在临终前对他的儿子们说:“ 已经写好了遗嘱, 把马留给你们,你们一定要按 的要求去分。” 老人去世后,三兄弟看到了遗嘱。

遗嘱上写着:“ 把十七匹马全都留给 的三个儿子。长子得一半,次子得三分之一,给幼子九分之一。

不许流血,不许杀马。你们必须遵从父亲的遗愿!” 这三个兄弟迷惑不解。

尽管他们在学校里学习成绩都不错,可是他们还是不会用17除以2、用17除以3、用17除以9,又不让马流血。于是他们就去请教当地一位公认的智者。

这位智者看了遗嘱以后说:“ 借给你们一匹马,去按你们父亲的遗愿分吧!” 0,可以说是人类最早接触的数了。 们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”

这样说显然是不正确的。 们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。

而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此, 们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。

一个整体无法分成0份,即“没有意义”。后来 才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。

从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。

105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。

0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来, 始终认为是荒唐的。” 想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。

作为一个中学生, 的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“ 的新大陆”。3写些经典例题 4外加些数学家的故事 例如 数学家高斯的故事 高斯(gauss 1777~1855)生于brunswick,位于现在德国中北部。

他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。

七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。

同时,高斯和大他差不多十岁的助教bartels变得很熟,而bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。

经过这次的访问,高斯免除了每天晚上织布的工作,每天和bartels讨论数学,但不久之后,bartels也没有什么东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。

数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。

隔年,高斯进入braunschweig学院。这年,高斯十五岁。

在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(law of quadratic reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。

1795年高斯进入哥廷根(g?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。

最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。 希腊时代的数学家已经知道如何用尺规作出正 2m*3n*5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。

但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一: 1、n = 2k,k = 2, 3,… 2、n = 2k * (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 fk = 22k 的。

2.五年级数学手抄报内容

1、数学格言:

1、数学是无穷的科学. ——外尔(Weil)

2、问题是数学的心脏.—— 哈尔默斯(P.R.Halmos )

3、只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡.—— 希尔伯特(Hilbert )

4、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.——高斯 (Gauss)

5、数学是科学的皇后,而数论是数学的皇后 ——高斯(Gauss)

6、数学比喻: 古希腊哲学家芝诺号称"悖论之父",他有四个数学悖论一直传到今天。他曾讲过一句名言:"大圆圈比小圆圈掌握的知识要多一点,但因为大圆圈的圆周比小圆圈的长,所以它与外界空白的接触面也就比小圆圈大,因此更感到知识的不足,需要努力去学习"。

7、把数学当成一门语言学习,学会每一个术语的用法,熟悉每一个符号的意义

8、不要放过任何一道看上去很简单的例题——他们往往并不那么简单,或者可以引申出很多知识点。

9、会用数学公式,并不说明你会数学。

10、如果不是天才的话,想学数学就不要想玩游戏——你以为你做到了,其实你的数学水平并没有和你通关的能力一起变高——其实可以时刻记住:学数学是你玩“生活”这个大游戏玩的更好!

2、数学故事:高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:

1+2+3+ 。.. +97+98+99+100 = ?

老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?

高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:

1+2+3+4+ 。.. +96+97+98+99+100

100+99+98+97+96+ 。.. +4+3+2+1

=101+101+101+ 。.. +101+101+101+101

共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>

从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!

3、数学小问题:

(1)在下题数字之间分别添上合适的运算符号。

1()2()3()4=1

1()2()3()4()5=1

1()2()3()4()5()6=1

1()2()3()4()5()6()7=1

1()2()3()4()5()6()7()8() =1

(2)改正一个错的符号。

1+2+3+4+5+6+7+8+9=44

1+2+3+4+5+6+7+8+9=50

1+2+3+4+5+6+7+8+9=86

1+2+3+4+5+6+7+8+9=39

1+2+3+4+5+6+7+8+9=31

3.五年级上数学手抄报资料有哪些

数学是无穷的科学。——赫尔曼外尔

数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。数学是科学之王。——高斯

在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。——康扥尔

只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示独立发展的终止或衰亡。——希尔伯特

在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。——毕达哥拉斯

一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。——马克思

一个国家的科学水平可以用它消耗的数学来度量。——拉奥

数学的本质在於它的自由.——康扥尔(Cantor)

在数学的领域中,提出问题的艺术比解答问题的艺术更为重要.——康扥尔(Cantor)

没有任何问题可以向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明.——希尔伯特(Hilbert)

只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡.——希尔伯特

加减乘除(+、-、*(·)、÷(∶))等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们.别看它们这么简单,直到17世纪中叶才全部形成.

法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法.这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“—”表示不足.到1514年,荷兰的赫克首次用“+”表示加法,用“—”表示减法.1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“—”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用.

以符号“*”代表乘是英国数学家奥特雷德首创的.他于1631年出版的《数学之钥》中引入这种记法.据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的.后来,莱布尼兹认为“*”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认.

除法符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广.除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”.至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度.

1、点错的小数点

学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里. 美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.

点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.

2、蒲丰试验

一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。

蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。

3、数学魔术家

1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。

工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。

这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。

4.5年级数学手抄报内容资料

数学家的故事——祖冲之 页首

祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.

祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".

祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.

祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".

5.五年级下学期数学手抄报资料

华 罗 庚

华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。

1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国人大常委会委员和政协第六届全国委员会副主席。

华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。

6.五年级数学手抄报内容

“聪明在于勤奋,天才在于积累”————华罗庚 “干下去还有50%成功的希望,不干便是100%的失败。”

————王菊珍 “一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。”

----托尔斯泰 “数学的本质在於它的自由。”———— 康托(Cantor) “在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要。”

————康托(Cantor) “没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明。”————希尔伯特(Hilbert) “数学是无穷的科学。”

————赫尔曼外尔 “问题是数学的心脏。”————P.R.哈尔莫斯 “只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡。”

————Hilbert “数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深。”———— 卡尔·弗里德里希·高斯 “时间是个常数,但对勤奋者来说,是个‘变数’。

用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。” ————雷巴柯夫 “在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。”

————华罗庚 “天才=2%的灵感+98%的血汗。”————托马斯·阿尔瓦·爱迪生(有些版本是“天才=1%的灵感+99%的血汗。”

) “要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。” ————季米特洛夫 “近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。

并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。” ----阿尔伯特·爱因斯坦 “数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来, 但证明却隐藏的极深。

数学是科学之王。” --——高斯 “在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要。”

----康托尔 “只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡。” ----希尔伯特 “在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。”

----毕达哥拉斯 “一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。” ----卡尔·海因里希·马克思 “一个国家的科学水平可以用它消耗的数学来度量。”

----拉奥 “数学——科学不可动摇的基石,促进人类事业进步的丰富源泉。” ---- 巴罗 “在奥林匹斯山上统治著的上帝,乃是永恒的数。”

----雅可比 “如果没有数所制造的关於宇宙的永恒的仿造品,则人类将不能继续生存。” ----尼采 “不懂几何者免进。”

----柏拉图 “几何无王者之道!” ---- 欧几里得 “数学家实际上是一个著迷者,不迷就没有数学。” ---- 诺瓦利斯 “没有大胆的猜测,就做不出伟大的发现。”

---- 艾萨克·牛顿 “数统治着宇宙。”----毕达哥拉斯 “数学,科学的女皇;数论,数学的女皇。”

----卡尔·弗里德里希·高斯 “上帝创造了整数,所有其余的数都是人造的。” ----克隆内克 “上帝是一位算术家” ----雅克比 “一个没有几分诗人气的数学家永远成不了一个完全的数学家。”

----维尔斯特拉斯 “纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。”----怀德海 “可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。”

----麦克斯韦 “数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。”----史密斯 “无限!再也没有其他问题如此深刻地打动过人类的心灵。”

----希尔伯特 “发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。”----达尔文 “宇宙的伟大建筑是现在开始以纯数学家的面目出现了。”

----京斯 “这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。”----A?N?怀德海 “给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。”

----柯西 “纯数学是魔术家真正的魔杖。”----诺瓦列斯 “如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。”

----柏拉图 “整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。”----伯克霍夫 “数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。”

----A.埃博 “生命只为两件事,发展数学与教授数学” ----普尔森 “用心智的全部力量, 来选择我们应遵循的道路。”----笛卡儿 “我不知道, 世上人会怎样看我; 不过, 我自己觉得, 我只像一个在海滨玩耍的孩子, 一会捡起块比较光滑的卵石, 一会儿找到个美丽的贝壳; 而在我前面, 真理的大海还完全没有发现。”

----艾萨克·牛顿 “我之所以比笛卡儿看得远些, 是因为我站在巨人的肩上。” ----艾萨克·牛顿 “不亲自检查桥梁的每一部分的坚固性就不过桥的旅行者是不可能走。

7.数学手抄报的内容可以写什么

基本也就是一些有趣的生活中的数学问题比较好,或者一些关于数学的小故事。

例如:数学小故事:点错的小数点

学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里。

美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家。两星期后,她接到医院寄来的一张帐单,款数是63440美元。她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡。后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元。点错一个小数点,竟要了一条人命。正如牛顿所说:“在数学中,最微小的误差也不能忽略。”

五年级数学黑板报小知识