什么是波粒二象性?
光到底是波还是粒子?这在物理学界经历了长期的争论。牛顿是微粒说的代表人物,而惠更斯则认为光是机械波。经历了麦克斯韦、赫兹、托马斯杨、菲涅耳等人的努力,人们逐渐认识到光是一种电磁波。
但是,科学家赫兹发现了光电效应现象:紫外线照射可以使得锌板发射电子。
原本大家以为这是个平淡无奇的现象,因为光具有能量,可以将电子撞出。但是,最初人们认为光的能量与光强有关,因此越强的光越容易发生光电效应,但是这个想法却无法获得实验支持。人们发现光电效应是否发生与光的强弱无关,而似乎与光的频率有关:频率越大越容易发生光电效应。
为了解释这个问题,爱因斯坦大胆借用了普朗克的观点。他认为:光的能量是一份份的,每一份称为一个光量子,或简称光子,光子的能量与频率的关系也满足普朗克公式。
比如,紫外线光子的能量就比可见光强,可见光的光子能量又比红外线强。因此,只有频率高的光才能将电子撞出。光强并不表示每个光子的能量,而表示光子的个数。爱因斯坦通过这个关系完美解释了光电效应实验,并获得诺贝尔奖。
于是,在爱因斯坦提出了光子学说之后,人们认识到光不光具有波动性,也具有粒子性,于是就称为波粒二像性。爱因斯坦说:“好像有时我们必须用一套理论,有时候又必须用另一套理论来描述(这些粒子的行为),有时候又必须两者都用。”
既然电磁波是有粒子性的,那么粒子是否也有波动性呢?这个想法看似天方夜谭,一个苹果如何能跟波联系到一起?
但是自然界就是这么神奇,就好像法拉第发现了变化的磁场可以产生电场,麦克斯韦就联想到变化的电场也能产生磁场一样,一位年轻的法国学者大胆的预言:不只光具有波粒二象形,实物粒子也有波粒二象性。这就是法国学者路易·维克多·德布罗意。
德布罗意经过长期的思索,得出一个结论:不止是光,所有的物质都具有波粒二象性。物质的粒子性由动量P代表(质量与速度的乘积),波动性由波长λ代表,并且二者的乘积等于普朗克常数h.
比如,一颗子弹质量m=0.1kg, 当它以v=300m/s的速度运动的时候,子弹的动量P=mv=30kgm/s.这样子弹的波长
这个波长如此之短,任何仪器都无法探测到,但是它是存在的。
在此之前,量子力学教父级人物——丹麦物理学家尼尔斯.波尔在1913年提出了氢原子能量量子化模型。
波尔指出:电子在围绕氢原子运动时,轨道只能取某些特定的值。这些特定的值满足量子化条件:
其中m是电子质量, r是电子轨道半径,v是电子速度,n是一个整数,称为量子数。h是普朗克常数。
当电子在不同轨道之间跃迁时,氢原子就可以发射光子。波尔通过这个假设成功解释了氢原子发光现象,并获得诺贝尔奖。
可是,为什么氢原子的运动要满足这个规律呢?1923年,德布罗意在《法国科学院学报》上连续发表了三篇论文,解释了波尔量子化条件:电子轨道必须使得电子在原子核周围形成驻波。
所谓驻波,就是指电子的波长必须能够收尾相接。也就是说,电子轨道周长必须是波长的整数倍。
如果电子的波长与动量的关系满足λ=h/P,就可以得到与波尔的完全一致的结论了。
要证实一个物理理论,必须通过实验。既然粒子具有波动性,那么就应该能表现出波的特点,那就是干涉和衍射。干涉和衍射是指:波通过障碍物时会传播方向会发生变化,造成障碍物后面出现不同于直线传播的图案。例如:双缝干涉就是光通过两个缝隙之后,在后面的屏幕上出现明暗相间的条纹。
圆孔衍射就是光通过一个小孔之后在后面的屏幕上形成同心圆环。
干涉和衍射是波特有的,声波、水波、光波都具有干涉和衍射现象。 那么要证实物质波的存在,就必须发现粒子的干涉和衍射现象。
终于,科学家GP汤姆孙成功观测到了电子的圆孔衍射图样:将电子通过一个狭窄的缝,电子经过缝之后居然表现出了光的特点——在屏幕上出现了衍射条纹。至此物质波的学说被人们证实了。
那么,粒子的波动性本质到底是什么呢?
德国物理学家玻恩提出:粒子的波动性与经典的机械波不同,它并不表示振动形式的传递,而是表示粒子存在于各个不同位置的概率。也就是说:微观世界中的粒子并不一定在某个位置,而是存在一定的概率分布。在某些地方概率大,在某些地方概率小,用波函数就能描述这种差别。这种解释称为哥本哈根诠释。宏观物质——例如一个苹果,也具有波动性,只是由于波长太小,所以人们才会没有感觉。
现在人们认为:物质的波粒二像性是普遍存在的,但是只有在微观世界,讨论它才有意义。这是因为在微观世界,牛顿力学已经失效,必须使用量子力学,量子力学的基础就是概率与不确定性,而波动性正好可以描述这种性质。