高中数学集合知识点归纳

bdqnwqk2年前问题16

1.高一集合知识总结

概念含有一个未知数且未知数的最高次数为2次的的不等式叫做一元二次不等式,它的一般形式是ax^2+bx+c>0或ax^2+bx+c<0(a不等于0),其中ax^2+bx+c实数域上的二次三项式。

一元二次不等式的解法 1)当V("V"表示判别是,下同)=b^2-4ac>=0时,二次三项式,ax^2+bx+c有两个实根,那么ax^2+bx+c总可分解为a(x-x1)(x-x2)的形式。这样,解一元二次不等式就可归结为解两个一元一次不等式组。

一元二次不等式的解集就是这两个一元一次不等式组的解集的并集。 还是举个例子吧。

下面我们看一组实例: 1) 莲塘一中高一三班全体同学 2) 所有小于10的质数 3) 2006年参加世界杯的所有国家 4) 方程 的所有解的集合 5) 我国个子高的人 6) 与10非常接近的数 师:通过上面的实例我们发现一个耐人寻味的问题,有一些对象构成的全体是确定,有些是不确定的,于是我们把能够确定的对象看做一个整体,就说这个整体是由这些对象的全体构成的集合。 1、定义:一般地,某些指定对象集在一起就成为一个集合。

集合中的每个对象叫做这个集合的元素。 师:上面哪些是集合?元素是什么? 生:1)、2)、3)、4)、5)、6)和一些其他答案 师:看样子,大家意见不统一。

集合是由元素构成的,要想确定集合必须先确定元素,那元素到底有哪些特性呢? 2、集合中元素的特性 1) 确定性:集合中的元素必须是确定的,不能是模糊不清的。 2) 互异性:集合中的任意两个元素必须是互不相同的。

3) 无序性:集合与其中元素的排列顺序无关。 师:此时,我们在来判断哪些是集合。

生:1)、2)、3)、4),因为5)、6)不满足确定性。 师:很好! 师:集合常用大写字母A、B、C、D等来表示。

元素常用小写字母a、b、c等来表示。 3、元素与集合的关系 1) 如果是a集合A的元素,就说a属于集合A,记做:a A 2) 如果是A不是集合A的元素,就说a不属于集合A,记做:a A 注意; 和 只是表示元素与集合的关系。

例题: 1) A={2,4,6} 2 A 8 A 2) 请大家考虑:A={1,2}, B={{1,2},{2,3}},集合A与B的关系? 4、常见的集合专用符号:N、N 、Z、Q、R 三、课堂练习 1、课本第五页练习 2、用正确符号填空: ( )R,-2( )Q, ( )Q,6.5( )N,0( )N 3、考察下面每组对象能否构成集合?说明为什么。 1) 著名数学家 2) 莲塘一中全体教师 3) 直角坐标系内的所有点 4) 绝对值小于8的实数 5) 我国的小河流 评注: 整体性:其中“集在一起”,说明集合是指某些事物的整体,而不是指其中的个别事物。

确定性:其中“指定对象”,说明集合是有属于它的元素完全确定的,一个对象要么是他的元素,要么不是,二者必居其一。 由老师在一次解释上面几个例题。

一、首先介绍高中数学与初中数学学习特点的变化,帮助学生主动调控学习心理。 1、数学语言在抽象程度上突变。

高中的数学语言与初中有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。

而高一数学一下子就触及抽象的集合符号语言、逻辑运算语言、函数语言、图形语言等。高一年级的学生一开始的思维梯度太大,以至集合、映射、函数等概念难以理解,觉得离生活很远,似乎很“玄”。

我们在教学中可以多应用理论联系实际降低思维难度,循序渐进地培养训练学生以形象、通俗的文字语言与符号语言和图形语言互相转化,提升学生的语言“悟”性。 2、思维方法向理性层次跃迁。

高中数学思维方法与初中阶段大不相同。初中阶段,由于很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么,确定了常见的思维套路。

因此,形成初中生在数学学习中习惯于这种机械的,便于操作的定势方式。而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了更高的要求。

这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降是高一学生产生数学学习障碍的另一个原因。我们在教学中要注重启发式教学,应用讨论式教学培养学生能力。

当然,学生能力的发展是渐进的,不是一朝一夕的事,只要高一新生能努力摆脱初中的思维定势,就能较快从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证形思维。 3、知识内容的整体数量剧增 高中数学比初中数学的知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。

这也使很多学习被动的、依赖心理重的高一新生感到不适应。这就需要我们在上课过程中,进行学习心理辅导,提出学习要求并及时检查督促:第一,要每天做好课前预习、课后的复习工作,并努力记牢重点知识;第二,要每周、每单元后及时区别新旧知识并体会他们的内在联系,使新知识顺利地同化于原有知识结构之中;第三,每单元测验后要及时改差错,否则知识信息量差错过大时,其记忆效果不会很好,影响学生学习的信心。

第四,要多做总结、归类,建立主体的知识结构网络。 因此,要教会学生对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;体会几种学习方法:特殊到一般的类比法,由一例到。

2.高一数学集合知识点总结

一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性: ①.元素的确定性; ②.元素的互异性; ③.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的分类: 1.有限集 含有有限个元素的集合 2.无限集 含有无限个元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5} 4、集合的表示:{ … } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员}B={12345} 2.集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2} 二、集合间的基本关系 1.“包含”关系子集 注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B或集合B不包含集合A记作A B或B A 2. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

3.“相等”关系(5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-11} “元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ① 任何一个集合是它本身的子集。A?A ②真子集:如果A?B且A? B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B B?C 那么 A?C ④ 如果A?B 同时 B?A 那么A=B 三、集合的运算 1、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。

记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 2.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 3、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作: CSA 即 CSA ={x ? x?S且 x?A} (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U 4、交集与并集的性质:A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A A∪φ= A A∪B = B∪A。

3.高一数学必修一集合在知识总结

集合具有某种特定性质的事物的总体。

这里的“事物”可以是人,物品,也可以是数学元素。例如: 1、分散的人或事物聚集到一起;使聚集:紧急~。

2、数学名词。一组具有某种共同性质的数学元素:有理数的~。

3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。

康托(Cantor, G.F.P.,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。集合,在数学上是一个基础概念。

什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。

集合 集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。

元素与集合的关系 元素与集合的关系有“属于”与“不属于”两种。集合与集合之间的关系 某些指定的对象集在一起就成为一个集合集合符号 ,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。

空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。

子集,真子集都具有传递性。 『说明一下:如果集合 A 的所有元素同时都是集合 B 的元素,则 A 称作是 B 的子集,写作 A ? B。

若 A 是 B 的子集,且 A 不等于 B,则 A 称作是 B 的真子集,一般写作 A ? B。 中学教材课本里将 ? 符号下加了一个 ≠ 符号(如右图), 不要混淆,考试时还是要以课本为准。

所有男人的集合是所有人的集合的真子集。』 集合的几种运算法则 并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B} 交集: 以属于A且属于B的元 差集表示 素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B} 例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5} 。

那么因为A和B中都有1,5,所以A∩B={1,5} 。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。

那么说A∪B={1,2,3,5}。 图中的阴影部分就是A∩B。

有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减 集合1再相乘。

48个。 对称差集: 设A,B 为集合,A与B的对称差集AÅB定义为: AÅB=(A-B)∪(B-A) 例如:A={a,b,c},B={b,d},则AÅB={a,c,d} 对称差运算的另一种定义是: AÅB=(A∪B)-(A∩B) 无限集: 定义:集合里含有无限个元素的集合叫做无限集 有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。

差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:A\B={x│x∈A,x不属于B}。

注:空集包含于任何集合,但不能说“空集属于任何集合”. 补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A} 空集也被认为是有限集合。 例如,全集U={1,2,3,4,5} 而A={1,2,5} 那么全集有而A中没有的3,4就是CuA,是A的补集。

CuA={3,4}。 在信息技术当中,常常把CuA写成~A。

集合元素的性质 1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。

2.独立性:集合中的元素的个数、集合本身的个数必须为自然数。 3.互异性:集合中任意两个元素都是不同的对象。

如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。

4.无序性:{a,b,c}{c,b,a}是同一个集合。 5.纯粹性:所谓集合的纯粹性,用个例子来表示。

集合A={x|x<2},集合A 中所有的元素都要符合x<2,这就是集合纯粹性。 6.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性。

完备性与纯粹性是遥相呼应的。集合有以下性质 若A包含于B,则A∩B=A,A∪B=B 集合的表示方法 集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。

将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={…}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。

常用的有列举法和描述法。 1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。

{1,2,3,……} 2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实。

4.高一数学集合知识点总结

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

①.元素的确定性; ②.元素的互异性; ③.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的分类:

1.有限集 含有有限个元素的集合

2.无限集 含有无限个元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

4、集合的表示:{ … } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}

1. 用拉丁字母表示集合:A={我校的篮球队员}B={12345}

2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

二、集合间的基本关系

1.“包含”关系子集

注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B或集合B不包含集合A记作A B或B A

2. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

3.“相等”关系(5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-11} “元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

① 任何一个集合是它本身的子集。A?A

②真子集:如果A?B且A? B那就说集合A是集合B的真子集,记作A B(或B A)

③如果 A?B B?C 那么 A?C

④ 如果A?B 同时 B?A 那么A=B

三、集合的运算

1、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

2.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.

记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

3、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作: CSA 即 CSA ={x ? x?S且 x?A}

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

4、交集与并集的性质:A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A

A∪φ= A A∪B = B∪A

5.高一必修一集合知识点总结

第一章 集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性; 2.元素的互异性; 3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集 含有有限个元素的集合2.无限集 含有无限个元素的集合3.空集 不含任何元素的集合 例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B① 任何一个集合是它本身的子集。

AíA②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)③如果 AíB, BíC ,那么 AíC④ 如果AíB 同时 BíA 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。

记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作: CSA 即 CSA ={x | x?S且 x?A}SCsAA(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U。

6.高中数学集合知识总结

高考一轮复习教案(集合) 一.课标要求:1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

二.命题走向 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主,分值5分。

高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体题型估计为:(1)热点是集合的基本概念、运算和工具作用。

三.要点精讲1.集合:某些指定的对象集在一起成为集合。(1)集合中的对象称元素,若a是集合A的元素,记作 ;若b不是集合A的元素,记作 ;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(4)常用数集及其记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R。2.集合的包含关系:(1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作A B(或 );集合相等:构成两个集合的元素完全一样。

若A B且B A,则称A等于B,记作A=B;若A B且A≠B,则称A是B的真子集,记作A B;(2)简单性质:1)A A;2) A;3)若A B,B C,则A C;4)若集合A是n个元素的集合,则集合A有2n个子集(其中2n-1个真子集);3.全集与补集:(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U;(2)若S是一个集合,A S,则, = 称S中子集A的补集;(3)简单性质:1) ( )=A;2) S= , =S。4.交集与并集:(1)一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集。

交集 。(2)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。

。注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

5.集合的简单性质:(1) (2) (3) (4) ;(5) (A∩B)=( A)∪( B), (A∪B)=( A)∩( B)。四.典例解析 题型1:集合的概念 例1.设集合 ,若 , 解:由于 中 只能取到所有的奇数,而 中18为偶数。

则 。例2.设集合P={m|-1解:Q={m∈R|mx2+4mx-4①m=0时,-4②m综合①②知m≤0,∴Q={m∈R|m≤0}。

点评:该题考察了集合间的关系,同时考察了分类讨论的思想。集合 中含有参数m,需要对参数进行分类讨论,不能忽略m=0的情况。

题型2:集合的性质 例3.(2000广东,1)已知集合A={1,2,3,4},那么A的真子集的个数是( ) 点评:该题考察集合子集个数公式。注意求真子集时千万不要忘记空集 是任何非空集合的真子集。

同时,A不是A的真子集。变式题:同时满足条件:① ②若 ,这样的集合M有多少个,举出这些集合来。

答案:这样的集合M有8个。例4.已知全集 ,A={1, }如果 ,则这样的实数 是否存在?若存在,求出 ,若不存在,说明理由。

解:∵ ;∴ ,即 =0,解得 当 时, ,为A中元素;当 时, 当 时, ∴这样的实数x存在,是 或 。另法:∵ ∴ , ∴ =0且 ∴ 或 。

点评:该题考察了集合间的关系以及集合的性质。分类讨论的过程中“当 时, ”不能满足集合中元素的互异性。

此题的关键是理解符号 是两层含义: 。变式题:已知集合 , , ,求 解:由 可知,(1) ,或(2) 解(1)得 ,解(2)得 ,又因为当 时, 与。

7.高中数学第一章 集合知识详细内容

集合集合具有某种特定性质的事物的总体。

这里的“事物”可以是人,物品,也可以是数学元素。例如: 1、分散的人或事物聚集到一起;使聚集:紧急~。

2、数学名词。一组具有某种共同性质的数学元素:有理数的~。

3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。

康托(Cantor, G.F.P.,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。集合,在数学上是一个基础概念。

什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。

集合集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。

元素与集合的关系 元素与集合的关系有“属于”与“不属于”两种。集合与集合之间的关系 某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。

空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。

子集,真子集都具有传递性。 『说明一下:如果集合 A 的所有元素同时都是集合 B 的元素,则 A 称作是 B 的子集,写作 A ? B。

若 A 是 B 的子集,且 A 不等于 B,则 A 称作是 B 的真子集,一般写作 A ? B。 中学教材课本里将 ? 符号下加了一个 ≠ 符号(如右图), 不要混淆,考试时还是要以课本为准。

所有男人的集合是所有人的集合的真子集。』集合的几种运算法则 并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B} 交集: 以属于A且属于B的元 差集表示素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B} 例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5} 。

那么因为A和B中都有1,5,所以A∩B={1,5} 。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。

那么说A∪B={1,2,3,5}。 图中的阴影部分就是A∩B。

有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减 集合1再相乘。

48个。 对称差集: 设A,B 为集合,A与B的对称差集AÅB定义为: AÅB=(A-B)∪(B-A) 例如:A={a,b,c},B={b,d},则AÅB={a,c,d} 对称差运算的另一种定义是: AÅB=(A∪B)-(A∩B) 无限集: 定义:集合里含有无限个元素的集合叫做无限集 有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。

差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:A\B={x│x∈A,x不属于B}。

注:空集包含于任何集合,但不能说“空集属于任何集合”. 补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A} 空集也被认为是有限集合。 例如,全集U={1,2,3,4,5} 而A={1,2,5} 那么全集有而A中没有的3,4就是CuA,是A的补集。

CuA={3,4}。 在信息技术当中,常常把CuA写成~A。

集合元素的性质 1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。

2.独立性:集合中的元素的个数、集合本身的个数必须为自然数。 3.互异性:集合中任意两个元素都是不同的对象。

如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。

4.无序性:{a,b,c}{c,b,a}是同一个集合。 5.纯粹性:所谓集合的纯粹性,用个例子来表示。

集合A={x|x<2},集合A 中所有的元素都要符合x<2,这就是集合纯粹性。 6.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性。

完备性与纯粹性是遥相呼应的。集合有以下性质 若A包含于B,则A∩B=A,A∪B=B集合的表示方法集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。

将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={…}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。

常用的有列举法和描述法。 1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。

{1,2,3,……} 2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合。

8.高一数学中关于集合的知识

集合1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合B={0,|x|,y},且A=B,则x+y= 2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。

已知集合M={y|y=x2 ,x∈R},N={y|y=x2+1,x∈R},求M∩N;与集合M={(x,y)|y=x2 ,x∈R},N={(x,y)|y=x2+1,x∈R}求M∩N的区别。3. 集合 A、B,时,你是否注意到“极端”情况:或;求集合的子集时是否忘记. 例如:对一切恒成立,求a的取植范围,你讨论了a=2的情况了吗? 4. 对于含有n个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为 如满足条件的集合M共有多少个5. 解集合问题的基本工具是韦恩图; 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法?6. 两集合之间的关系。

7. (CUA)∩( CU B) =CU(A∪B) (CUA)∪( CUB) = CU(A∩B);;。

9.高一数学知识点总结

一 集合与简易逻辑集合具有四个性质 广泛性 集合的元素什么都可以 确定性 集合中的元素必须是确定的,比如说是好学生就不具有这种性质,因为它的概念是模糊不清的 互异性 集合中的元素必须是互不相等的,一个元素不能重复出现无序性 集合中的元素与顺序无关二 函数这是个重点,但是说起来也不好说,要作专题训练,比如说二次函数,指数对数函数等等做这一类型题的时候,要掌握几个函数思想如 构造函数 函数与方程结合 对称思想,换元等等三 数列这也是个比较重要的题型,做体的时候要有整体思想,整体代换,等比等差要分开来,也要注意联系,这样才能做好,注意观察数列的形式判断是什么数列,还要掌握求数列通向公式的几种方法,和求和公式,求和方法,比如裂项相消,错位相减,公式法,分组求和法等等四 三角函数三角函数不是考试题型,只是个应用的知识点,所以只要记熟特殊角的三角函数值和一些重要的定理就行五 平面向量这是个比较抽象的把几何与代数结合起来的重难点,结体的时候要有技巧,主要就是把基本知识掌握到位,注意拓展,另外要多做题,见的题型多,结体的时候就有思路,能够把问题简单化,有利于提高做题效率常用导数公式1.y=c(c为常数) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x 8.y=cotx y'=-1/sin^2x 9.y=arcsinx y'=1/√1-x^2 10.y=arccosx y'=-1/√1-x^2 11.y=arctanx y'=1/1+x^2 12.y=arccotx y'=-1/1+x^2。

高中数学集合知识点归纳

标签: 知识点归纳