数学小知识圆形

bdqnwqk2年前百科11

1.所有关于圆的知识[所有公式.]详细点

圆的特征:圆是由一条曲线构成的封闭图形,圆上任意一点到圆心的距离相等.圆心和半径的作用:圆心决定圆的位置,半径决定圆的大小 .圆是轴对称图形,直径所在的直线是圆的对称轴.圆有无数条对称轴 .同一圆中直径是半径的2倍 圆的周长指围成圆的曲线的长.直径大的圆周长就大,直径小的圆周长就小 圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用π表示,计算时通常取3.14 圆的周长:C=2πr或C=πd 求半径:r=C/2π 求直径:d=C/π 圆的面积意义:圆形物体,图形所占平面大小或圆形物体表面大小是圆的面积 .面积计算公式:π*r的平方 圆环面积计算方法:S=πR的平方-πr的平方或S=π(R的平方-r的平方) (R是大圆半径,r是小圆半径)。

2.关于圆的知识(至少10条)

1、圆是定点的距离等于定长的点的集合 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 2、定理 不在同一直线上的三点确定一个圆.3、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 推论 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平行弦所夹的弧相等 4、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 5、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 6、定理 一条弧所对的圆周角等于它所对的圆心角的一半 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 7、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 8、①直线L和⊙O相交 dr 9、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 切线的性质定理 圆的切线垂直于经过切点的半径 推论1 经过圆心且垂直于切线的直线必经过切点 推论2 经过切点且垂直于切线的直线必经过圆心 10、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

3.数学 圆 所有的知识点

1、圆的有关概念:(1)、确定一个圆的要素是圆心和半径。(2)连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。圆上任意两点间的部分叫做圆弧,简称弧。小于半圆周的圆弧叫做劣弧。大于半圆周的圆弧叫做优弧。在同圆或等圆中,能够互相重合的弧叫做等弧。顶点在圆上,并且两边和圆相交的角叫圆周角。经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。直角三角形内切圆半径 满足: 。

2、圆的有关性质(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推论1(ⅰ)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。(ⅱ)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(ⅲ)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。推论2圆的两条平行弦所夹的弧相等。(3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。推论2半圆或直径所对的圆周角都相等,都等于90 。90 的圆周角所对的弦是圆的直径。推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。(5)定理:不在同一条直线上的三个点确定一个圆。(6)圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长;切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角。(7)圆内接四边形对角互补,一个外角等于内对角;圆外切四边形对边和相等;(8)弦切角定理:弦切角等于它所它所夹弧对的圆周角。(9)和圆有关的比例线段:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段长的积相等。(10)两圆相切,连心线过切点;两圆相交,连心线垂直平分公共弦。

4.数学史上关于“圆的面积”的数学小知识

人们常说:一把钥匙,开一把锁。当你拿起另外一把相似的钥匙想打开这把锁时,你不认为着拿错了钥匙,却意味着眼下的锁头与钥匙磨合不到位。

关于圆面积的数学小知识,中外史上都在借助“正6x2ⁿ边形面积πR²或πr²”这把钥匙想打开圆面积这把锁,不是拾错了钥匙吗?

πR²或πr²的推理是给圆的内接或外切正6x2ⁿ边形,随着n的无穷大的推理。n的无穷大依然是正6x2ⁿ边形的面积对圆面积无关。

根据面积“软化”等积变形公理发现:如果圆面积是7a²,那么它的外切正方形面积就是9a²,为此推出"圆面积等于直径3分之1平方的7倍"。圆的面积公式: s=7(d/3)²。

5.'高三数学关于圆的知识点归纳(用表格或框图的形式

知识点挺多的,但是考的就这么几种类型的.1 直线与园 垂径定理 圆与直线相交,满足圆心的距离的平方等于半径的平方减去直线与圆相交的弦长的一半的平方.2 直线与圆的位置关系 若圆心到直线的距离大于半径,则直线与圆相离,若等于,则相切,若小于,则相交.3 圆与圆的位置关系,题型比较难的,就是利用圆与圆的位置关系计算类比推算椭圆,比如,一个大圆和一个小圆内切小圆半径为4,大圆半径为大圆上一点到小圆圆心为2,大圆半径为10,那么,小圆的圆心轨迹是什么?答 因为两圆内切,根据圆与圆相内切定理,知,小圆圆心和大圆圆心的距离为8,大圆上一点到小圆圆心距离为2,8加2等于大圆半径10即符合椭圆判定定理.即这是一个2c为10以大圆圆心和圆上一点为焦点的椭圆.。

6.数学圆,知识点

4、弓形面积1) S弓形=S扇形-SΔOAB 2) S弓形=S扇形+SΔOAB 二、圆锥的侧面积和全面积1 把矩形ABCD绕直线AB旋转一周得到的图形叫做圆柱.旋转轴直线AB叫做它的轴. 2 在轴AB上的矩形的边AB的长度叫做它的高.平行于轴的边DC旋转而成的曲面叫做它的侧面,无论旋转到什么位置,这条边都叫做圆柱的母线. 3 垂直于轴的边AD,BC旋转而成的圆面叫做它的底面 4、圆锥是由一个底面和一个侧面围成的,我们把圆锥 底面圆周上任意一点与圆锥顶点的连线叫做圆锥 的母线.连结顶点与底面圆心的线段叫做圆锥的高. 沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长、半径为圆锥的一条母线的长的扇形面积,而圆锥的全面积就是它的侧面积与它的底面积的和. 5.设底面半径为r,母线长为l,则 S侧= l·2πr=πrl S全=πrl+πr 数量关系:外离:d>R+r四条公切线 外切:d=R+r三条公切线 相交:R-r内切:d=R-r一条公切线 内含:d6、两圆相交的性质定理:相交两圆的连心线垂直平分两圆的公共弦. 7、公切线的性质 (1)如果两圆有两条外公切线,那么这两条外公切线长相等;如果两圆有两条内公切线,那么这两条内公切线长相等. (2)如果两圆有两条外(内)公切线,并且相交,那么交点一定在两圆的连心线上,并且连心线平分这两条公切线的夹角. 8、相交弦定理及其推论定理:圆内的两条相交弦,被交点分成的两条线段长的 积相等(PA·PB=PC·PD). 推论:如果弦与直径垂直相交,那么弦的一半是它分直 径所成的两条线段的比例中项(PC2=PD2=PA·PB). 9、切割线定理及推论定理:从圆外一点引圆的切线和割线,切线长 是这点到割线与圆交点的两条线段长的比例 中项(PA2=PB·PC或PA2=PD·PE). 推论:从圆外一点引圆的两条割线,这一点到两条割 线与圆的交点的两条线段长的积相等 (PB·PC=PD·PE).圆的有关性质 一,〖知识点〗圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质 〖大纲要求〗 1. 正确理解和应用圆的点集定义,掌握点和圆的位置关系; 2. 熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。

一个 圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一; 3. 熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半 径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系; 4. 掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的 圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径; 5. 掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关 问题; 6. 注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦” ③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。 〖考查重点与常见题型〗 1. 判断基本概念、基本定理等的正误,在中考题中常以选择题、填空题的形式考查学 生对基本概念和基本定理的正确理解,如:下列语句中,正确的有( ) (A)相等的圆心角所对的弧相等 (B)平分弦的直径垂直于弦 (C)长度相等的两条弧是等弧 (D)弦过圆心的每一条直线都是圆的对称轴 2. 论证线段相等、三角形相似、角相等、弧相等及线段的倍分等。

此种结论的证明重 点考查了全等三角形和相似三角形判定,垂径定理及其推论、圆周角、圆心角的性质及切线的性质,弦切角等有关圆的基础知识,常以解答题形式出现。 二,〖知识点〗 相交弦定理、切割线定理及其推论 〖大纲要求〗 1. 正误相交弦定理、切割线定理及其推论; 2. 了解圆幂定理的内在联系; 3. 熟练地应用定理解决有关问题; 4. 注意(1)相交弦定理、切割线定理及其推论统称为圆幂定理,圆幂定理是圆和相似 三角形结合的产物。

这几个定理可统一记忆成一个定理:过圆内或圆外一点作圆的两条割线,则这两条割线被圆截出的两弦。

7.六年级数学圆的知识归纳

1、圆:圆是由一条曲线围成的平面图形。

(长方形、梯形等都是由几条线段围成的平面图形)

2、半径:一端在圆心,一端在圆上的线段叫半径。在同一圆里,半径有无数条,条条都相等。

3、直径:通过圆心,两端都在圆上的线段叫直径。在同一圆里,直径有无数条,条条都相等。

在同一圆里,直径长是半径长的2倍。(d=2r, r=d÷2)

4、圆是轴对称图形,有无数条对称轴,对称轴就是直径。

5、圆心决定圆的位置,半径决定圆的大小。

6、正方形里最大的圆。两者联系:边长=直径

7、长方形里最大的圆。两者联系:宽=直径

8、直径是圆里最长的线段

11、半圆的周长等于圆周长的一半加一条直径。

14、半圆的面积是圆面积的一半。S半=πX r的平方÷2

15、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径的倍数2倍

16、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。

17、三个顶点都在圆上,且有一条边是直径的三角形一定是直角三角形。

应用这条规律可以找出圆的直径和圆心。

(1)以圆上的一个点为顶点画一个直角

(2)连接角的两边与圆的两个交点,这条就是直径

8.初三数学圆知识点归纳

圆的特征:圆是由一条曲线构成的封闭图形,圆上任意一点到圆心的距离相等。

圆心和半径的作用:圆心决定圆的位置,半径决定圆的大小 圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴 同一圆中直径是半径的2倍 圆的周长指围成圆的曲线的长。

直径大的圆周长就大圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用π表示,计算时通常取3.14 ,直径小的圆周长就小。 圆的周长:C=2πr或C=πd 求半径:r=C/2π 求直径:d=C/π 圆的面积意义:圆形物体,图形所占平面大小或圆形物体表面大小是圆的面积 面积计算公式:πr² 圆环面积计算方法:S=πR的平方-πr的平方或S=π(R的平方-r的平方)(R是大圆半径,r是小圆半径)。

9.小学六年级上册数学圆的知识点

最低0.27元/天开通百度文库会员,可在文库查看完整内容>

原发布者:libin051125

一、圆的认识1、日常生活中的圆2、画图、感知圆的基本特征(1)实物画图(2)系绳画图3、对比,感知圆的特征:我们以前学过的长方形、正方形、平行四边形、梯形、三角形等,都是曲线段围成的平面图形,而圆是由曲线围成的一种平面图形。【归纳】:圆是由一条曲线围成的封闭图形二、圆的各部分名称1、圆心:用圆规画出圆以后,针尖固定的一点就是圆心,通常用字母O表示,圆心决定圆的位置2、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。3、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段三、圆的主要特征1、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。2、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。用字母表示为:d=2r或r=d/23、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。圆是轴对称图形且有无数条对称轴一、圆的周长的认识1、围成圆的曲线的长叫做圆的周长2、周长与圆的直径有关,圆的直径越长,圆的周长就越大二、圆周率的意义及圆的周长公式1、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做

10.小学五年级数学关于圆的知识点

1、圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

2、圆心:圆任意两条对称轴的交点为圆心。 注:圆心一般符号O表示

3、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

4、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

5、圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴

6、在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。

7、圆的半径或直径决定圆的大小,圆心决定圆的位置。

8、圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

9、圆周率:圆的周长与直径的比值叫做圆周率。

10、圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

11、直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

12、圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2;,用字母S表示。

13、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

14、在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

二、周长计算公式

(1)已知直径:C=πd

(2)已知半径:C=2πr

(3)已知周长:D=c/π

(4)圆周长的一半:1/2周长(曲线)

(5)半圆的周长:1/2周长+直径(π÷2+1)

三、面积计算公式:

(1)已知半径:S=πr2

(2)已知直径:S=π(d/2)2

(3)已知周长:S=π[c÷(2π)]2

数学小知识圆形

标签: 圆形小知识