圆锥的侧面积关于圆锥的知识点
1.初中数学圆锥侧面积公式
按照展开扇形来看是 n/360 *2r(扇形的直径)
按母线来看是 πrll(派乘底面圆的半径再乘扇形半径也就是母线)圆锥的侧面展开是扇形,所以根据扇形的面积计算公式得到圆锥侧面积=πLR
(L是圆锥的侧长,R是圆锥半径)
不懂继续往下看:
圆锥体的侧面积公式出现两种:
S=1/2RL。(R为圆锥体底面圆的周长,L为圆锥的母线长)
S=πRL。 (R为圆锥体底面圆的半径,L为圆锥的母线长)
都是正确的,只是途径不一样。
求圆锥体的侧面积,先要把圆锥体变形。
设想沿着圆锥一条母线剪断,然后展开,可以得到一个扇形,求它的面积就可以了。
求扇形面积有两种方法,结果就有了以上两种不同的表达式。
表达式 1
利用积分原理。
设想扇形是由若干n个等腰三角形拼成,这些三角形是足够小,使得其底边长 = R/n (R是圆锥体地面圆的周长,即扇形的弧长),高 = 侧边长L(L为扇形的半径,亦为圆锥体的母线)。
则扇形面积
S = n(三角形个数) X s(单位等腰三角形的面积)
= n X (1/2 X R/n X L)
= 1/2RL
表达式 2
利用弧长。
扇形面积 / 圆总面积 = 弧长 / 圆周长
扇形面积
S = 圆总面积(扇形所属圆) X (弧长 / 圆周长)
= 圆总面积 X (圆锥地面周长 / 扇形所属圆形周长)
= πL2(L为母线长) X (2πR / 2πL)
= πLR
2.圆锥的侧面积
圆锥体的侧面积公式出现两种:
S=1/2RL。(R为圆锥体底面圆的周长,L为圆锥的母线长)
S=πRL。 (R为圆锥体底面圆的半径,L为圆锥的母线长)
都是正确的,只是途径不一样。
求圆锥体的侧面积,先要把圆锥体变形。
设想沿着圆锥一条母线剪断,然后展开,可以得到一个扇形,求它的面积就可以了。
求扇形面积有两种方法,结果就有了以上两种不同的表达式。
表达式 1
利用积分原理。
设想扇形是由若干n个等腰三角形拼成,这些三角形是足够小,使得其底边长 = R/n (R是圆锥体地面圆的周长,即扇形的弧长),高 = 侧边长L(L为扇形的半径,亦为圆锥体的母线)。
则扇形面积
S = n(三角形个数) X s(单位等腰三角形的面积)
= n X (1/2 X R/n X L)
= 1/2RL
表达式 2
利用弧长。
扇形面积 / 圆总面积 = 弧长 / 圆周长
扇形面积
S = 圆总面积(扇形所属圆) X (弧长 / 圆周长)
= 圆总面积 X (圆锥地面周长 / 扇形所属圆形周长)
= πL2(L为母线长) X (2πR / 2πL)
= πLR
3.关于圆锥的所有知识
圆锥的体积
一个圆锥所占空间的大小,叫做这个圆锥的体积.
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:
V=1/3Sh(V=1/3SH)
S是底面积,h是高,r是底面半径。
证明:
把圆锥沿高分成k分
每份高 h/k,
第 n份半径:n*r/k
第 n份底面积:pi*n^2*r^2/k^2
第 n份体积:pi*h*n^2*r^2/k^3
总体积(1+2+3+4+5+。+n)份:pi*h*(1^2+2^2+3^2+4^2+。+k^2)*r^2/k^3
因为
1^2+2^2+3^2+4^2+。+k^2=k*(k+1)*(2k+1)/6
所以
总体积(1+2+3+4+5+。+n)份:pi*h*(1^2+2^2+3^2+4^2+。+k^2)*r^2/k^3
=pi*h*r^2* k*(k+1)*(2k+1)/6k^3
=pi*h*r^2*(1+1/k)*(2+1/k)/6
因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0
所以pi*h*r^2*(1+1/k)*(2+1/k)/6=pi*h*r^2/3
因为V柱=pi*h*r^2
所以
V锥是与它等底等高的V柱体积的1/3
圆锥的表面积
一个圆锥表面的面积叫做这个圆锥的表面积.
圆锥的计算公式
圆锥的侧面积=高的平方*π*百分之扇形的度数
圆锥的侧面积=1/2*母线长*底面周长
圆锥的表面积=底面积+侧面积 S=πr的平方+πra (注a=母线)
圆锥的体积=1/3SH 或 1/3πr的平方h
如果圆锥和他的扇形联系在一起那么n=a/r*360
圆锥的其它概念
圆锥的高:
圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;
圆锥的侧面积:
将圆锥的侧面沿母线展开,是一个扇形;没展开时是一个曲面。
圆锥的母线:
圆锥的侧面展开形成的扇形的半径、底面圆上到顶点的距离。
圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且侧面展开图是扇形。
圆柱与圆锥的关系
与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。
不相等的圆柱圆锥不相等。
4.关于圆锥的所有知识
圆锥的体积 一个圆锥所占空间的大小,叫做这个圆锥的体积. 一个圆锥的体积等于与它等底等高的圆柱的体积的1/3 根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式: V=1/3Sh(V=1/3SH) S是底面积,h是高,r是底面半径。
证明: 把圆锥沿高分成k分 每份高 h/k, 第 n份半径:n*r/k 第 n份底面积:pi*n^2*r^2/k^2 第 n份体积:pi*h*n^2*r^2/k^3 总体积(1+2+3+4+5+。+n)份:pi*h*(1^2+2^2+3^2+4^2+。
+k^2)*r^2/k^3 因为 1^2+2^2+3^2+4^2+。+k^2=k*(k+1)*(2k+1)/6 所以 总体积(1+2+3+4+5+。
+n)份:pi*h*(1^2+2^2+3^2+4^2+。+k^2)*r^2/k^3 =pi*h*r^2* k*(k+1)*(2k+1)/6k^3 =pi*h*r^2*(1+1/k)*(2+1/k)/6 因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0 所以pi*h*r^2*(1+1/k)*(2+1/k)/6=pi*h*r^2/3 因为V柱=pi*h*r^2 所以 V锥是与它等底等高的V柱体积的1/3 圆锥的表面积 一个圆锥表面的面积叫做这个圆锥的表面积. 圆锥的计算公式 圆锥的侧面积=高的平方*π*百分之扇形的度数 圆锥的侧面积=1/2*母线长*底面周长 圆锥的表面积=底面积+侧面积 S=πr的平方+πra (注a=母线) 圆锥的体积=1/3SH 或 1/3πr的平方h 如果圆锥和他的扇形联系在一起那么n=a/r*360 圆锥的其它概念 圆锥的高: 圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高; 圆锥的侧面积: 将圆锥的侧面沿母线展开,是一个扇形;没展开时是一个曲面。
圆锥的母线: 圆锥的侧面展开形成的扇形的半径、底面圆上到顶点的距离。 圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且侧面展开图是扇形。
圆柱与圆锥的关系 与圆柱等底等高的圆锥体积是圆柱体积的三分之一。 体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。 不相等的圆柱圆锥不相等。
5.数学有关于圆:请总结下弧长及扇形的面积和圆锥的侧面积这两节的知
首先来看弧长的计算公式L=的推导过程:
因为360°的圆心角所对的弧长就是圆周长C=2πR(R为圆的半径)
所以1°的圆心角所对的弧长是2πR/360,即。
这样n°的圆心角所对的弧长的计算公式是L=n*2πR/360
L=n*πR/180
扇形面积:在半径为R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR^2,所以圆心角为n°的扇形面积:
S=nπR^2÷360
扇形还有另一个面积公式
S=1/2lR
其中l为弧长,R为半径
本来S=nπR^2÷360
按弧度制.2π=360度.因为n的单位为度.所以l为角度为n时所对应的弧长.即.l=n*R
所以. s=n*R*π*R/2π=1/2lR.
圆锥侧面积:
n/360*π*R²=1/2LR(n指度数,L指弧长)圆锥的侧面积等于圆锥的底面半径乘以圆周率再乘以母线长。