氮化基础知识
1.金属网带热处理基础知识那里有
金属网带热处理方法
钢的氮化及碳氮共渗
钢的氮化(气体氮化)
概念:氮化是向钢的表面层渗入氮原子的过程,其目的是提高表面硬度和耐磨性,以及提高疲劳强度和抗腐蚀性。
它是利用氨气在加热时分解出活性氮原子,被钢吸收后在其表面形成氮化层,同时向心部扩散。
氮化通常利用专门设备或井式渗碳炉来进行。适用于各种高速传动精密齿轮、机床主轴(如镗杆、磨床主轴),高速柴油机曲轴、阀门等。
氮化工件工艺路线:锻造-退火-粗加工-调质-精加工-除应力-粗磨-氮化-精磨或研磨。
由于氮化层薄,并且较脆,因此要求有较高强度的心部组织,所以要先进行调质热处理,获得回火索氏体,提高心部机械性能和氮化层质量。
钢在氮化后,不再需要进行淬火便具有很高的表面硬度大于HV850)及耐磨性。
氮化处理温度低,变形很小,它与渗碳、感应表面淬火相比,变形小得多
钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程,习惯上碳氮共渗又称作氰化。目前以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较是广。中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度,低温气体碳氮共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性.
2.气体氮化的基本过程是什么
在网上找到的资料如下: 气体氮化一般使用无水氨气(或氨 氢,或氨 氮)作为供氮介质。
整个氮化过程可分三个阶段。(1)氨的分解氨是一种很不稳定的气体,在一定条件下易于分解。
它的分解率随温度的升高而增加,在400~600℃温度范围内,它的自然分解率可趋向全部分解,其分解反应如下:2NH3=====2[N] 6[H]氨气中分解出的活性氮原子是新生态的氮原子,具有很大的化学活性,部分被工件表面吸收,然后从表面向内部扩散,剩余的[N]很快结合成分子态的N2与H2等一起从废气中排出,所以氨分解式实际上是:2NH3======2[N] 6H=====3H2 N2为了使氮化作用继续不断地进行下去,必须连续地输入氨气,不断地产生活性氮原子。 (2)钢件表面吸收氮原子活性氮原子被钢件表面中吸收后,深入铁素体中形成含氮量较高的铁素体,过饱和后又形成氮化物。
(3)扩散钢件表面吸收氮原子以后,在表面和里层存在着氮浓度梯度,促使氮原子从表面向里扩散,形成一定厚度的氮化层。 在氮化温度下,吸附层中的活性氮原子向金属晶格内部移动,留下的空隙又迅速地被吸附层的氮原子所填满,因而始终保持金属表面上有活性氮原子连续渗入。
因此,扩散过程如下。①向炉内不断输入含氮的气体;氨分子向金属表面迁移;氨分子被金属表面吸附;氨分在相界面上不断分解,形成氮原子和氢原子;吸收剩余的活性原子复合成分子,不断从炉内排出;表面吸附的氮原子溶解于γ-Fe、α-Fe中。
②氮原子由金属表面向内中扩散,并产生一定的浓度梯度。③当氮超过在α-Fe中的溶解度后,表层开始形成氮化物。
④氮化物沿金属表面的垂直方向和平行方向长大。⑤表面依次形成γ相和ε相。
⑥氮化层不断增厚。⑦氮从氮化物层向金属内部扩散。
影响以上基本过得的因素很多,如温度、时间、压力、介质成分(或氮势)以及零件钢材成分和组织等。气体氮化工艺就是要合理地控制这些影响因素,获得满意的氮化层。
3.热处理知识
退火与回火的区别在于:(简单地说,退火就是不要硬度,回火还保留一定硬度。)
回火:高温回火所得组织为回火索氏体。回火一般不单独使用,在零件淬火处理后进行回火,主要目的是消除淬火应力,得到要求的组织,回火根据回火温度的不同分为低温、中温和高温回火。
分别得到回火马氏体、屈氏体和索氏体。其中淬火后进行高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。
因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。回火后硬度一般为HB200-330。
退火:退火过程中发生得是珠光体转变,退火的主要目的是使金属内部组织达到或接近平衡状态,为后续加工和最终热处理做准备。去应力退火是为了消除由于塑性形变加工、焊接等而造成的以及铸件内存在的残余应力而进行的退火工艺。
锻造、铸造、焊接以及切削加工后的工件内部存在内应力,如不及时消除,将使工件在加工和使用过程中发生变形,影响工件精度。采用去应力退火消除加工过程中产生的内应力十分重要。
去应力退火的加热温度低于相变温度A1,因此,在整个热处理过程中不发生组织转变。内应力主要是通过工件在保温和缓冷过程中自然消除的。
为了使工件内应力消除得更彻底,在加热时应控制加热温度。一般是低温进炉,然后以100℃/h左右得加热速度加热到规定温度。
焊接件得加热温度应略高于600℃。保温时间视情况而定,通常为2~4h。
铸件去应力退火的保温时间取上限,冷却速度控制在(20~50)℃/h,冷至300℃以下才能出炉空冷。时效处理可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发生形,从而使残余应力消除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底。
4.热处理工艺基础
1. 正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。
2. 退火annealing:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺。 3. 固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺。
4. 时效:合金经固溶热处理或冷塑性形变后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。 5. 固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,以便继续加工成型。
6. 时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度。 7. 淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺。
8. 回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。 9. 钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程。
习惯上碳氮共渗又称为氰化,目前以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较为广泛。中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度。
低温气体碳氮共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性。 10. 调质处理quenching and tempering:一般习惯将淬火加高温回火相结合的热处理称为调质处理。
调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织为优。
它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。 11. 钎焊:用钎料将两种工件粘合在一起的热处理工艺。
回火的种类及应用 根据工件性能要求的不同,按其回火温度的不同,可将回火分为以下几种: (一)低温回火(150-250度) 低温回火所得组织为回火马氏体。其目的是在保持淬火钢的高硬度和高耐磨性的前提下,降低其淬火内应力和脆性,以免使用时崩裂或过早损坏。
它主要用于各种高碳的切削刃具,量具,冷冲模具,滚动轴承以及渗碳件等,回火后硬度一般为HRC58-64。 (二)中温回火(350-500度) 中温回火所得组织为回火屈氏体。
其目的是获得高的屈服强度,弹性极限和较高的韧性。因此,它主要用于各种弹簧和热作模具的处理,回火后硬度一般为HRC35-50。
(三)高温回火(500-650度) 高温回火所得组织为回火索氏体。习惯上将淬火加高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。
因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。回火后硬度一般为HB200-330。