大数据相关知识
1.大数据的主要学习内容有哪些
基础阶段:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。
hadoop mapreduce hdfs yarn:hadoop:Hadoop 概念、版本、历史,HDFS工作原理,YARN介绍及组件介绍。大数据存储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。
学习大数据不是一朝一夕的事情,想要学好大数据可以看口扣丁学堂的视频,希望对你有帮助。
2.大数据时代应该具备什么专业知识
通过对海量数据的交换、整合和分析,发现新的知识,创造新的价值,带来新的发现,大数据时代正在向我们走来。“谁拥有了大数据,谁就占有了制高点。就政府而言,大数据必将成为宏观调控、国家治理、社会管理的信息基础”。
一如往常,11月宏观经济数据一出来,即引来各方专家解读。略有不同的是,来自统计业内的动向显示,包括CPI在内的统计数据正面临一场变革。这场变革是大数据时代的一种必然。
国家统计局刚刚与11家涉足大数据的领军企业签署关于大数据的战略合作协议,共同探讨如何在政府统计上应用大数据。
什么是大数据?大数据在哪儿?有什么用?怎么用?与政府部门有什么关系?现在提大数据是不是有些哗众取宠、“危言耸听”?
举两个例子。在甲型H1N1流感爆发前几周,谷歌公司通过观察5000万条美国人最频繁检索的词条数据,发现“哪些是治疗咳嗽和发热的药物”这一主题的检索频率大增,进而准确预测了流感的发生及传播范围。美国地铁警察跟踪地铁抢劫案发生的时间和地点,分析原因和规律,制作出预测图表,使地铁抢劫案大为下降。除了商界的成功案例,大数据在政府管理上的非凡“身手”正在显现。
通过对海量数据的交换、整合和分析,发现新的知识,创造新的价值,带来新的发现,大数据时代正在向我们走来。
与不少发达国家已把大数据的开发应用提高到国家战略高度相比,我国的大数据管理还处萌芽状态。重定性、轻定量,重观点、轻数据的思维惯性,使得我们在数据收集、使用和管理上不太灵敏。比如,雾霾污染物的比例各是多少?城市机动车饱和量是多少?缺乏精确数据都让相关决策难以精准发力。
大数据不是“唬人”的标签,没必要对其夸大其词,也不能充耳不闻、敬而远之。
今年全国两会就有人大代表提出,可以通过分析春节期间移动用户漫游情况,掌握人口的流动规模与迁徙规律,为交通管理、铁路运输、公共安全管理等提供决策参考。这是挖掘大数据价值的现实建议。
大数据的能量往往超出我们的想象。在房地产价格统计上,银行的贷款信息及住建部门的网签数据能让房价数据更真实可靠;在就业领域,搜索引擎大数据可以帮助监测预警失业率和劳动力市场供求状况;道路上拍摄的交通影像数据可以帮助推算公路运输的货运量,等等。这些不是异想天开,它们一旦落地,将大大提高政府管理的精细化,提高决策的科学性。在医疗健康、食品卫生、地质灾害、社会舆情、信息安全、国土安全等领域,大数据的分析研究可以有效实现对于重大安全、危机、风险的防范和预警,大大提升国家治理水平。
“谁拥有了大数据,谁就占有了制高点。就政府而言,大数据必将成为宏观调控、国家治理、社会管理的信息基础”——国家统计局局长马建堂的话可谓高屋建瓴。
跟上新技术发展的脚步,从国家层面通盘考虑我国大数据发展的战略,在立法层面规范用户隐私保护、政府信息收集及发布、公共数据的开放等——我们做好准备了吗?
千万不可低估互联网等新技术的能量。运用这些技术,国家治理的能力与效率将大为提高。正可谓“用智慧的分析洞察,构建智慧的地球”。
3.大数据要学习些什么方面的知识
1、学习大数据首先要学习Java基础
怎样进行大数据学习的快速入门?学大数据课程之前要先学习一种计算机编程语言。Java是大数据学习需要的编程语言基础,因为大数据的开发基于常用的高级语言。而且不论是学习hadoop,还是数据挖掘,都需要有编程语言作为基础。因此,如果想学习大数据开发,掌握Java基础是必不可少的。
2、学习大数据必须学习大数据核心知识
Hadoop生态系统;HDFS技术;HBASE技术;Sqoop使用流程;数据仓库工具HIVE;大数据离线分析Spark、Python语言;数据实时分析Storm;消息订阅分发系统Kafka等。
如果把大数据比作容器,那么这个容器的容量无限大,什么都能往里装,大数据离不开物联网,移动互联网,大数据还和人工智能、云计算和机器学习有着千丝万缕的关系,大数据海量数据存储要高扩展就离不开云计算,大数据计算分析采用传统的机器学习、数据挖掘技术会比较慢,需要做并行计算和分布式计算扩展。
3、学习大数据需要具备的能力
数学知识,数学知识是数据分析师的基础知识。对于数据分析师,了解一些描述统计相关的内容,需要有一定公式计算能力,了解常用统计模型算法。而对于数据挖掘工程师来说,各类算法也需要熟练使用,对数学的要求是最高的。
编程语言,对于想学大数据的同学,至少需要具备一门编程语言,比如SQL、hadoop、hive查询、Python等均可。
4、学习大数据可以应用的领域
大数据技术可以应用在各个领域,比如公安大数据、交通大数据、医疗大数据、就业大数据、环境大数据、图像大数据、视频大数据等等,应用范围非常广泛,大数据技术已经像空气一样渗透在生活的方方面面。大数据技术的出现将社会带入了一个高速发展的时代,这不仅是信息技术的终极目标,也是人类社会发展管理智能化的核心技术驱动力。
因此建议想学习大数据的同学,最好报班学习,可以系统的学习大数据理论知识,还会结合项目实践更熟练的掌握大数据技能。
4.大数据分析的技术包括哪些
与传统的bai在线联机分析处理OLAP不同,对大数据的深度分析主要基于大规模的机器学习技术,一般而du言,机器学习模型的训练过程可以归结为最优化定义于大规模zhi训练数据上的目标函数并且通过一个循环迭代的算法实现dao。
1、编程语言:Python/R
2、版数据库权MySQL、MongoDB、Redis等
3、数据分析工具讲解、数值计算包、Pandas与数据库。 等
4、进阶:Matplotlib、时间序列分析/算法、机器学习。 等
5.大数据专业主要学什么课程
大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。
此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。
以中国人民大学为例:
基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。
必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。
选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。
扩展资料:
大数据岗位7a686964616f31333431346362:
1、大数据系统架构师
大数据平台搭建、系统设计、基础设施。
技能:计算机体系结构、网络架构、编程范式、文件系统、分布并行处理等。
2、大数据系统分析师
面向实际行业领域,利用大数据技术进行数据安全生命周期管理、分析和应用。
技能:人工智能、机器学习、数理统计、矩阵计算、优化方法。
3、hadoop开发工程师。
解决大数据存储问题。
4、数据分析师
不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
5、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapReduce写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
参考资料来源:中国人民大学信息学院-数据科学与大数据技术
参考资料来源:百度百科-大数据采集与管理专业
6.大数据核心技术有哪些
首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
大数据
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapReduce程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
7.大数据核心技术有哪些
简单说有三大核心技术:拿数据,算数据,卖数据。
1、大数据采集与预处理:Flume NG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理;Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到“存储库”中;Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库中的数据导入到Hadoop中,也可以将Hadoop中的数据导入到关系型数据库中;Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。2、处理和分析大数据:算数据需要计算平台了,数据怎么存(HDFS, S3, HBase, Cassandra),怎么算(Hadoop, Spark)。
两大重点:Hadoop:一种通用的分布式系统基础架构,具有多个组件:Hadoop分布式文件系统(HDFS),它将文件以Hadoop本机格式存储并在集群中并行化; YARN,协调应用程序运行时的调度程序; MapReduce,这是实际并行处理数据的算法。Spark:专注于在集群中并行处理数据,使用RDD(弹性分布式数据集)处理RAM中的数据。
3、大数据应用:大数据的实际应用场景,如金融大数据、教育大数据、餐饮大数据、交通大数据、工业大数据、农业大数据等。
8.大数据需要掌握多少知识
一、Java编程
Java语言是基础,可以编写Web应用、桌面应用、分布式系统、嵌入式系统应用等。Java语言有很多优点,它的跨平台能力赢得了很多工程师的喜爱。
二、linux基础操作命令
大数据开发一般在Linux环境下进行。
大数据工程师使用的命令主要在三方面:查看进程,包括CPU、内存;排查故障,定位问题;排除系统慢的原因等。
三、hadoop
Hadoop中使用最多的是HDFS集群和MapReduce框架。
HDFS存储数据,并优化存取过程。
MapReduce方便了工程师编写应用程序。
四、HBase
HBase可以随机、实时读写大数据,更适合于非结构化数据存储,核心是分布式的、面向列的Apache HBase数据库。
HBase作为Hadoop的数据看,它的应用、架构和高级用法对大数据开发来说非常重要。
五、Hive
Hive作为Hadoop的一个数据仓库工具,方便了数据汇总和统计分析。
六、ZooKeeper
ZooKeeper是Hadoop和Hbase的重要组件,可以协调为分布式应用程序。
ZooKeeper的功能主要有:配置维护、域名服务、分布式同步、组件服务。
七、phoenix
phoenix是一种开源的sql引擎,是用Java语言编写的。
八、Avro与Protobuf
Avro、Protobuf是适合做数据存储的数据序列化系统,有较丰富的数据结构类型,可以在多种不同的语言间进行通信。
九、Cassandra
Apache Cassandra是运行在服务器或者云基础设施上的可以为数据提供完美平台的数据库,具有高性能、可扩展性、高线性。
Cassandra支持数据中心间互相复制,低延迟、不受断电影响。它的数据模型有列索引、高性能视图和内置缓存。
十、Kafka
Kafka可以通过集群来提供实时的消息的分布式发布订阅消息系统,具有很高的吞吐量,主要是利用Hadoop的并行加载来统一线上、离线的消息处理。
十一、Chukwa
Chukwa是一个分布式的数据采集监视系统,具有可伸缩性和健壮性。
Chukwa的工具包可以对结果进行显示、监测、分析,充分使用收集到的数据。
十二、Flume
Flume是海量日志处理系统,具有高可用、高可靠、分布式的特点,可以对日志进行采集、聚合和传输。
Flume可以定制数据发送方来收集数据,也可以对数据简单处理后写到数据接收方。
9.大数据有关的工作有哪些
1、数据挖掘工程师数据建模、机器学习和算法实现;商业智能,用户体验分析,预测流失用户等;需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求2、数据架构师需求分析,平台选择,技术架构设计,应用设计和开发,测试和部署;高级算法设计与优化;数据相关系统设计与优化,需要平台级开发和架构设计能力。
成都加米谷大数据培训机构,大数据开发,数据分析与挖掘。3、数据库开发设计,开发和实施基于客户需求的数据库系统,通过理想接口连接数据库和数据库工具,优化数据库系统的性能效率等4、数据库管理数据库设计、数据迁移、数据库性能管理、数据安全管理,故障检修问题、数据备份、数据恢复等5、数据科学家数据挖掘架构、模型标准、数据报告、数据分析方法;利用算法和模型提高数据处理效率、挖掘数据价值、实现从数据到知识的转换6、数据产品经理把数据和业务结合起来做成数据产品;平台线提供基础平台和通用的数据工具,业务线提供更加贴近业务的分析框架和数据应用。