数学知识研究
1.数学小论文,发现生活中的现象与数学知识的联系,用数学知识研究
:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情.比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样.王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对.这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果.”其实,这道题我们可以很快速地做出一种方法,就是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米),但仔细推敲看一下,就觉得不对劲.其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点.如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米).所以正确答案应该是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米)和45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米).两个答案,也就是说王星的答案加上小英的答案才是全面的.在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意.否则就容易忽略了另外的答案,犯以偏概全的错误.关于“0” 0,可以说是人类最早接触的数了.我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量.”这样说显然是不正确的.我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点.而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的.2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等.” “任何数除以0即为没有意义.”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少.一个整体无法分成0份,即“没有意义”.后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数).从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”.在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙.例如,三角形.三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形.通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度.用6个正三角形就可以铺满地面.再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度.用4个正四边形就可以铺满地面.正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度.它不能铺满地面.六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度.用3个正四边形就可以铺满地面.七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度.它不能铺满地面.由此,我们得出了.n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度.若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面.我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面.例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的.。
2.小学数学研究方法有哪些
一、学生的数学学习过程研究
1、小学数学命题改革的趋势与策略研究
2、小学数学“解决问题”评价内容与方式的研究
3、学生视角中的“好”数学教师标准的调查与研究
4、学生视角中的“好”数学课标准的调查与研究
5、数学教师所需要哪些更高层次的知识?的本体性知识?
6、课堂教学常规研究
7、数学教师数学观的调查与分析
8、如何在校本教研中增强教师
二、教学资源研究
1、数学课堂合理利用教学资源的研究.
2、小学数学教学中有效情境的创设与利用研究
三、教学设计研究
1、小学数学概念教学的一般策略与关键因素的研究
2、关于“算”、“用”结合教学策略的研究
3、关于数学教学中动手实践有效性的研究
4、关于数学欣赏课的研究
5、关于新课程背景下口算教学的研究
四、教学过程研究
1、学生数学学习心理体验的研究
2、数学课堂教学有效性研究1、有效运用学生的学习起点实践研究
2、关注数学习困难生的实践研究
3、小学数学课前基础调查的作业设计研究
4、学生数学学习过程的优化研究.教学评价研究五、
3.求一个生活中的数学的研究课题,数学知识应用
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
生活中的数学有哪些例子?很多.如:测量,勾股定理中的(3,4,5)。
4.我要一篇数学小论文
数学小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。
比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。
这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米),但仔细推敲看一下,就觉得不对劲。
其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。
所以正确答案应该是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米)和45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
5.数学小论文5篇
我只能帮你一篇
数学论文“神奇的莫比乌斯圈”
莫比乌斯圈是一种只有一个面,一条线的曲面。
数学历史上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?许多人绞尽脑汁也没有想出来,他们觉得:如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不过这样就不符合涂抹的要求了。
对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家莫比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。 有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。 一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯曲着耷拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圆圈。
数学中的知识,很多都来自生活
6.小学数学研究专题有哪些
一、学生的数学学习过程研究1、有效运用学生的学习起点实践研究研究内容:什么是学生的学习起点,在数学教学中学习起点有哪些不同的类型研究,如何寻找与有效运用学生的学习起点研究。
2、关注数学习困难生的实践研究研究内容:对数学概念掌握、计算技能或或问题解决能力较弱的学习困难学生的个案研究,如何对学生进行针对性的辅导研究,关于“两极分化”现象的成因与对策研究。3、小学数学课前基础调查的作业设计研究4、学生数学学习过程的优化研究。
二、教学资源研究1、数学课堂合理利用教学资源的研究。研究内容:什么是数学课堂中可利用的教学资源?教学资源有哪些不同类型?如何利用课堂教学中的错误资源?如何合理运用教材,如教材中的主题图和练习题?如何对有困惑的教材进行创造性的重组并提出新的见解?如何发挥学具的作用?应用题与问题解决的关系研究2、小学数学教学中有效情境的创设与利用研究三、教学设计研究1、小学数学概念教学的一般策略与关键因素的研究研究内容:问题解决教学的一般策略与关键因素2、关于“算”、“用”结合教学策略的研究研究内容:练习课的设计策略,练习题的开发与运用,关于应用题教学中数量关系教学的研究。
3、关于数学教学中动手实践有效性的研究4、关于数学欣赏课的研究5、关于新课程背景下口算教学的研究四、教学过程研究1、学生数学学习心理体验的研究研究内容:如何让学生体验数学知识的产生、发展与价值?如何选择有效的教学方式?2、数学课堂教学有效性研究研究内容:如何把握课堂教学的节奏?如何提高课堂反馈的实效性?关于课堂上学生独立作业时间的研究,如何提高数学教师的课堂导入技能?投入和提高数学教师的课堂讲解技能?在“解决问题”的教学中如何处理好策略多样化与基本方法之间的关系,教师课堂提问的有效预设与课堂调控的研究(有些内容也可以单独成为研究课题)五、教学评价研究1、小学数学命题改革的趋势与策略研究2、小学数学“解决问题”评价内容与方式的研究3、学生视角中的“好”数学教师标准的调查与研究4、学生视角中的“好”数学课标准的调查与研究六、其他问题或课题1、数学教师所需要哪些更高层次的知识?2、小学数学中若干数学背景知识的梳理。3、提高数学教师解题能力的研究。
4、数学教师教学能力发展的研究。5、数学教师校本教研中的一些不足与对策研究。
6、数学教师校本教研的形式研究。8、数学教师数学观的调查与分析9、如何在校本教研中增强教师的本体性知识?10、课堂教学常规研究。