绝对值的知识点

bdqnwqk2年前基础16

1.初中一年级数学上册绝对值要点

一、代数含义 绝对值是分正数、负数和零三种情况来说明的.也就是,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.即当a为有理数时,| a | =二、对值的几何意义一个数的绝对值就是数轴上表示这个数的点离开原点的距离.即若a是有理数,则| a |就是数轴上表示“a”的点与原点“0”的距离,如,数轴上到原点的长度为6的点有两个,即±6,这个长度6就是 6和-6的绝对值.数轴是中学代数中数形结合思想最简单也是最基本的表现形式,利用数轴强化绝对值概念,不但可以从几何直观上理解绝对值的意义,而且能渗透数形结合的思想方法.三、绝对值的主要性质⑴正数及负数的绝对值都是正数,零的绝对值还是零.即,任何一个数的绝对值都是非负数,也就是,若a为有理数,则| a |≥0;⑵任何两个互为相反数的绝对值总相等,即,若a为有理数,则| a | = |-a |;⑶任何一个有理数都不大于它的绝对值,即,若a为有理数,则a≤| a | .四、典型例题分析例1 一个数的绝对值等于它本身,求这个数;一个数的绝对值等于它的相反数,求这个数.一个数的绝对值等于它本身,这个数是非负数;一个数的绝对值等于它的相反数,这个数是非正数,即负数和零.例2 若x0进行.例5 若| x-5| + | y + 2x + 6| = 0,求3x + y + 1的值.由非负数的性质知:3x + y + 1 = 0 .例6 若a、b互为相反数,c、d互为倒数,x是绝对值最小的数,且| p | = 2,求3a-3cd +(p + a + d)x + 3b-(p-1)的值.∵ a、b互为相反数,∴ a + b = 0 .又∵c、d互为倒数,∴cd = 1 .而x是绝对值最小的数,即x = 0 .∴3a-3cd +(p + a + d)x + 3b-(p-1) = (3a + 3b) +(p + a + d)x-(p-1) = 3(a + b) + (p + a + d)x-(p-1) = 0-3 + 0-(4-1) =-6 .。

2.七年级数学上册知识点归纳

七年级(上)数学知识点归纳与总结一、知识梳理知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数.它们都是比0小的数.0既不是正数也不是负数.我们可以用正数与负数表示具有相反意义的量.知识点2:有理数的概念和分类:整数和分数统称有理数.有理数的分类主要有两种:注:有限小数和无限循环小数都可看作分数.知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴.知识点4:绝对值的概念:(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零.注:任何一个数的绝对值均大于或等于0(即非负数).知识点5:相反数的概念:(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数.0的相反数是0.知识点6:有理数大小的比较:有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数.数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大.用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小.知识点7:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.知识点8:有理数加法运算律:加法交换律:两个数相加,交换加数的位置,和不变.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数.知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算.知识点11:乘法与除法1.乘法法则 2.除法法则3.多个非零的数相乘除最后结果符号如何确定知识点12:倒数1.倒数概念2.如何求一个数的倒数?(注意与相反数的区别)知识点13:乘方1.乘方的概念,乘方的结果叫什么?2.认识底数,指数3.正数的任何次幂是_________,零的任何次幂________负数的偶次幂是_________奇次幂是________知识点14:混合计算注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算.知识点15:科学记数法科学记数法的概念?注意a的范围(人教)。

3.正负数、有理数、数轴、绝对值的总结

比0小的是负数, 在数轴上处于0的左边,他的绝对值等于他的相反数.

比0大的是正数, 在数轴上处于0的右边,他的绝对值等于他本身.

0的相反数是0,0的绝对值也是0

正负数和0统称为有理数, 有理数可以表示成两个整数之间的比.反之可以表示成两个整数之间的比的才是有理数

数轴上这个数与0的距离叫这个数的绝对值, 数轴上两个数的距离等于他们的差的绝对值.

好了,这些就是大全了,自己精心总结的,望采纳

4.谁能告诉我绝对值的所有知识(初中程度)

1. 我们知道为了区分具有相反意义的量,引入了正数和负数。

例如两辆汽车,第一辆向东行驶了6公里,第二辆向西行驶了5公里。如果要表示它们行驶的方向(规定向东为正)和路程,就应当分别记作+6公里和-5公里。

但是,有时我们只需要研究行驶的路程,不需要考虑方向,即上例若问这两辆车各行驶了多少公里(不计方向),就可以记作6公里和5公里。这里6叫做+6的绝对值,5叫做-5的绝对值。

那么,什么叫一个数的绝对值呢?2. 我们规定:(1)一个正数的绝对值是它本身。例如,|3|=3,|+8.2|=8.2。

(2)一个负数的绝对值是它的相反数例如,|-8|=8,|-6.7|=6.7。(3)0的绝对值是0。

a是正数可以表示成a>0,a是负数可以表示成a < 0,这样,上面的三条可以表示成:<1>如果a>0,那么|a|=a;<2>如果a<0,那么|a|=-a;<3>如果a=0,那么|a|=0。例1 求7,-7, ;-5 的绝对值。

解:|7|=7, |-7|=7, |-5 |=5 。3. 绝对值的几何意义。

从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离。注意,这里的距离,是以单位长度为度量单位的,是一个非负的量。

一个数的绝对值的表示法,是在这个数的两旁各画一条竖线。例如-2的绝对值记作|-2|。

例2 (1)+3的绝对值怎么表示?是什么?(2)-3的绝对值怎么表示?是什么?(3) 绝对值等于3的数有几个?是什么?并将它们用数轴上的点表示出来。答:(1)|+3|=3;(2)|-3|=3;(3)绝对值等于3 的数有两个,是+3和-3。

在数轴上表示的两个负数,例如-2和-7,-7的绝对值较大,而-7在-2的左边,因此-7小于-2。两个负数,绝对值大的反而小。

例3 比较—1.2与—2.6 的大小。解: ∵ =1.2, =2.6 1.2<2.6 ∴—1.2> —2.6. 注意:上面的符号“∵”读作“因为”,符号“∴”读作“所以”。

(三)巩固练习1. |+2.7|,|-2.7|各表示什么意思?2. 和3 相等吗?为什么?3. “绝对值相等,符号相反的两个数是互为相反数”这句话对吗?4. “零的绝对值是零”这句话几何意义是什么?5. 绝对值等于6的数有几个?是什么?用数轴上的点表示出所有绝对值等于6的数来。6. 两个数的绝对值相等,这两个数是否一定相等?为什么?并举例说明。

7. “一个数的绝对值一定是正数”这句话是否正确?“一个数的绝对值一定不是负数”这句话是否正确?8. |-9|和9是不是互为相反数?为什么?|+9|和-9是不是互为相反数的?为什么?9. 用“>”、“=”或“<”号填空:(1)|0.28|____|-5.2|;(2)|0.02|____|-0.0003|; (3)|-5|_____|5|。10. 计算:(1)|-6|+|3|; (2)|-3.9|+|-0.6|;(3) |-7.8|-|7.8|。

(四)小结什么是一个数的绝对值呢?一个正数的绝对值是它本身,一个负数的绝对值是它的相反数;零的绝对值是零。从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离。

注意,这里的距离,是以单位长度为度量单位的,是一个非负的量。两个负数,绝对值大的反而小。

5.人教版初一数学上册知识点

第一章 有理数 1.1 正数和负数 阅读与bai思考 用正负数表示加工允许误差 1.2 有理数 1.3 有理数的加减法 实验与探究 填幻方 阅读与思考 中国人最先使用负du数 1.4 有理数的乘除法 观察与思考 翻牌游戏中的数学道理 1.5 有理数的乘方 数学活动 小结zhi 复习题1 第二章 整式的加减 2.1 整式 阅读与思考 数字1与字母X的对话 2.2 整式的加减 信息技术应用 电子表格与数据计算 数学活动 小结dao 复习题2 第三章 一元一次方程 3.1 从算式到方程 阅读与思考 “方程”史话 3.2 解一元一次方程(一版)——合并同类项与移项 实验与探究 无限循环小数化分数 3.3 解一元一次方程(二)——去括号与去分母 3.4 实际问题与一元一次方程 数学活动 小结 复习题3 第四章 图形认识初步 4.1 多姿多彩的图形 阅读与思考 几何学的起源 4.2 直线、射权线、线段 阅读与思考 长度的测量 4.3 角 4.4 课题学习 设计制作长方体形状的包装纸盒。

绝对值的知识点