数学选修22知识点
1.高中数学选修2
知识点总结 相似三角形的判定及有关性质 相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。
相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似。判定定理1:两角对应相等,两三角形相似。
判定定理2:两边对应成比例且夹角相等,两三角形相似。判定定理3:三边对应成比例,两三角形相似。
直角三角形相似的判定定理:斜边和一条直角边对应成比例,两直角三角形相似。相似三角形的性质: 相似三角形对应角相等,对应边成比例 相似三角形具有传递性 相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 相似三角形周长的比等于相似比 相似三角形面积比等于相似比的平方 直线和圆的位置关系1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.①Δ>0,直线和圆相交.②Δ=0,直线和圆相切.③Δ方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.①dR,直线和圆相离.2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.切线的性质 ⑴圆心到切线的距离等于圆的半径;⑵过切点的半径垂直于切线;⑶经过圆心,与切线垂直的直线必经过切点;⑷经过切点,与切线垂直的直线必经过圆心;当一条直线满足(1)过圆心;(2)过切点;(3)垂直于切线三个性质中的两个时,第三个性质也满足.切线的判定定理 经过半径的外端点并且垂直于这条半径的直线是圆的切线.切线长定理 从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角. 圆锥曲线性质的探讨 一、圆锥曲线的定义 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。
即{P。
PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0
二、圆锥曲线的方程 1.椭圆: + =1(a>b>0)或 + =1(a>b>0)(其中,a2=b2+c2) 2.双曲线: - =1(a>0, b>0)或 - =1(a>0, b>0)(其中,c2=a2+b2) 3.抛物线:y2=±2px(p>0),x2=±2py(p>0) 三、圆锥曲线的性质 1.椭圆: + =1(a>b>0) (1)范围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e= ∈(0,1)(5)准线:x=± 2.双曲线: - =1(a>0, b>0)(1)范围:|x|≥a, y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e= ∈(1,+∞)(5)准线:x=± (6)渐近线:y=± x3.抛物线:y2=2px(p>0)(1)范围:x≥0, y∈R(2)顶点:(0,0)(3)焦点:( ,0)(4)离心率:e=1(5)准线:x=- 【典型例题】 [例1] 如图△ABC中,∠C,∠B的平分线相交于O,过O作AO的垂线与边AB、AC分别交于D、E,求证:△BDO∽△BOC∽△OEC。证明:易得AO平分∠BAC,AO⊥DE ∴ ∠ADO=∠AEO ∴ ∠BDO=∠CEO 又∠BDO=90°+ ∠BAC ∠BOC=180°- (∠ABC+∠ACB)=90°+ ∠BAC∴ ∠BDO=∠BOC 又∠DBO=∠OBC ∴ △BDO∽△BOC 同理△ECO∽△OCB∴ △BDO∽△BOC∽△OEC [例2] △ABE中,D、C为AB上两点,AC=AE, ,求证:EC平分∠DEB。
证明:∵ AE=AC ∴ 即 又∵∠A=∠A ∴ △EAD∽△BAE ∴ ∠1=∠B ∵ AE=AC ∴ ∠1+∠2=∠ACE 又∵∠3+∠B=∠ACE ∴ ∠2=∠3∴ EC平分∠DEB [例3] 已知:D、E分别在△ABC的边AC和AB上,BD与CE交于F,其中AE=BE, , ,求 。证明:取AD中点N,连结EN ∴ EN BD ∴ ∴ ∵ ∴ * = ∵ = ∴ = = =11 [例4]如图,直角梯形ABCD中,∠A=∠B=90°,AD‖BC,E为AB上一点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与边CD有怎样的位置关系?解:以AB为直径的圆与CD是相切关系 如图,过E作EF⊥CD,垂足为F. ∵∠A=∠B=90°,∴EA⊥AD,EB⊥BC,∵DE平分∠ADC,CE平分∠BCD,∴ .∴以AB为直径的圆的圆心为E,且 ,∴以AB为直径的圆与边CD相切. [例5]已知:ΔABC内接于⊙O,过点A作直线EF. ⑴如图甲,AB为直径,要使得EF是⊙O的切线,还需添加的条件是(只需写出三种情况): ①________; ②_________;③_________. ⑵如图乙,AB为非直径的弦,∠CAE=∠B,求证:EF是⊙O的切线.解:⑴①∠FAB=90°.②∠B=∠EAC.③∠BAE=90°. ⑵连结AO并延长交⊙O于D,连结CD. ∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°. ∵∠D=∠B,∠B=∠CAE,∴∠CAE+∠CAD=90°,即OA⊥EF. 又∵EF经过半径OA的外端A,∴EF为⊙O的切线.[例6]如图所示,AB=AC,以AB为直径作⊙O,交BC于点D,交AC于点E,过点D作⊙O的切线DF,交AC于F,求证:(1)DF⊥。
2.数学选修2
选修2-2
第一章 导数及其应用
平均变化率
导数(或瞬时变化率)
导函数(导数):
导数的几何意义:函数y=f(x)在点x0处的导数(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=(x0).
应用:求切线方程,分清所给点是否为切点
导数的运算:
(1)几种常见函数的导数:
①(C)′=0(C为常数); ②()′=(x>0,); ③(sinx)′=cosx;
④(cosx)′=-sinx; ⑤(ex)′=ex; ⑥(ax)′=axlna(a>0,且a≠1);
⑦; ⑧(a>0,且a≠1).
(2)导数的运算法则:
①[u(x)±v(x)]′=u′(x)±v′(x); ②[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x);
③.
设函数在点处有导数,函数在点的对应点处有导数,则复合函数在点处也有导数,且 或。复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数。
定积分的概念,几何意义,区边图形的面积的积分形式表示,注意确定上方函数,下方函数的选取,以及区间的分割.微积分基本定理.
物理上的应用:汽车行驶路程、位移;变力做功问题。
函数的单调性
(1)设函数在某个区间(a,b)可导,如果,则在此区间上为增函数;如果,则在此区间上为减函数;
(2)如果在某区间内恒有,则为常数。
★★★反之,若已知可导函数在某个区间上单调递增,则,且不恒为零;可导函数在某个区间上单调递减,则,且不恒为零.
求单调性的步骤:
确定函数的定义域(不可或缺,否则易致错);
解不等式;
确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”★隔开,不能用“”连结。
极值与最值
对于可导函数,在处取得极值,则.
最值定理:连续函数在闭区间上一定有最大最小值.
若在开区间有唯一的极值点,则是最值点。
求极值步骤:
确定函数的定义域(不可或缺,否则易致错);
解不等式;
检验的根的两侧的符号(一般通过列表),判断极大值,极小值,还是非极值点.
求最值时,步骤在求极值的基础上,将各极值与端点处的函数值进行比较大小,切忌直接说某某就是最大或者最小。
恒成立问题 “”和“”,注意参数的取值中“=”能否取到。
例1 ,过的切线方程为
例2 设函数在处取得极值。
(1)求的值;
(2)若对于任意的,都有成立,求c的取值范围。
(答:(1)a=-3,b=4;(2))
例3 设函数
(1)求函数的单调区间、极值.
(2)若当时,恒有,试确定a的取值范围.
(答:(1)在(a,3a)上单调递增,在(-∞,a)和(3a,+∞)上单调递减;时,,时, (2)a的取值范围是)
第二章 推理与证明
分清概念:合情推理与演绎推理
综合法 分析法的步骤规范
反证法 步骤:①提出反设;②推出矛盾 ;③肯定结论
数学归纳法 步骤规范:(1)归纳奠基;(2)递推步骤
(最后一定说明当n=k+1时,结论成立,根据(1)(2),结论对于(或者其他)成立,必不可少)
例1 用综合法和分析证明
例2 已知
例3 ,求的值,由此猜想的通项公式,并证明。
(答:)
第三章 数系的扩充与复数的引入
复数的概念 三种表示形式:代数形式:,复平面内点Z(a,b),向量.
区分实数,虚数,纯虚数,复数
复数的四则运算及其几何意义
复数的模
例1 ()的充要条件是_________________________
例2 设复数满足条件那么的最大值是( )
(A)3 (B)4 (C) (D)
例3 实数为何值时,复数.
(1)为实数;
(2)为虚数;
(3)为纯虚数;
(4)对应点在第二象限.
例4.已知为实数.(1)若,求;(2)若,求,的值.
3.数学选修2
你好我是浙江的考生,本来想在网上搜搜结果没有合适的资料,看来只有自己写写了。
我从高考的角度给你罗列一下选修2-2知识点的知识点与重点。
从我省的实际情况来讲,本书的第一章是重点
先看第三章复数
1概念(就是要在心中牢记的)
复数、复数集、实部、虚部 P103
复平面、实轴、虚轴 P104
区分向量的模与复数的模 P105
共轭复数 P110
2计算(考试中主要的考点,常出在选择填空,重点)
四则运算 P107-110
重点是分母实数化
再看第二章
1概念
归纳推理P71
类比推理P73
演绎推理P78,三段论是重点
2技巧
反证法P89
数学归纳法(完全归纳)P93
出于弱化技巧,强化计算的高考方针,对于技巧的考察要求在降低,对于这些证明思想,或者说方法只要知道就行,如果考到也是倒数第二道大题的第三小问,学有余力的同学可以试试。一般的同学没必要花太多时间。
第一章 重点中的重点 每年必考 占卷面分数在25以上
初级要求
1概念
平均变化率P3
瞬时变化率、导数、导数的定义式P5
导函数P9
2计算
基本初等函数的导数公式P14 熟记
导数运算法则P15 熟记
复合函数求导P17难点,联系必修一中关于复合函数的定义复习
3应用
研究函数单调性P23黑体字
研究函数极值P29黑体字
研究函数最值P31黑体字
定积分在我省不考,如果要复习,则知道其计算方法即可P47 P53微积分基本定理
以上是初级要求 概念知道,会求导是关键。
中级要求
导数定义式的变形P5①
会分析原函数图像与导函数图像,特别注意与x轴的交点的含义,对应起来
增加复合函数的复杂度,锻炼求导的准确性,求导是计算的第一步,如果错了,嘿嘿~~~~
重点关注P32习题B组第一大题,这四个小题讲的是如何构造新函数用导数知识判断大小
这是压轴题第二小题的基本模型,用导数沟通了函数的单调性与大小的比较。一般压轴题做到最后就是构造函数,用导数判断单调性,比大小
高级要求
联系物理知识,运动定理
学会求二阶导数,以此来研究一阶导数的性质,在通过此研究原函数性质。属于压轴题的最后一小题类型,常常结合函数的构造,变形,不等式的放缩法等
注重细节,比如y=1/x 的两个单调递减区间之间是不能用∪的。
最后,这是要考做的,见多识广,熟能生巧,我做了一个学期嘞,加油干吧( ⊙ o ⊙ )!
4.数学选修2
选修2-2第一章 导数及其应用平均变化率 导数(或瞬时变化率) 导函数(导数): 导数的几何意义:函数y=f(x)在点x0处的导数(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=(x0).应用:求切线方程,分清所给点是否为切点导数的运算: (1)几种常见函数的导数: ①(C)′=0(C为常数); ②()′=(x>0,); ③(sinx)′=cosx; ④(cosx)′=-sinx; ⑤(ex)′=ex; ⑥(ax)′=axlna(a>0,且a≠1); ⑦; ⑧(a>0,且a≠1). (2)导数的运算法则: ①[u(x)±v(x)]′=u′(x)±v′(x); ②[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x); ③.设函数在点处有导数,函数在点的对应点处有导数,则复合函数在点处也有导数,且 或。
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数。定积分的概念,几何意义,区边图形的面积的积分形式表示,注意确定上方函数,下方函数的选取,以及区间的分割.微积分基本定理. 物理上的应用:汽车行驶路程、位移;变力做功问题。
函数的单调性 (1)设函数在某个区间(a,b)可导,如果,则在此区间上为增函数;如果,则在此区间上为减函数;(2)如果在某区间内恒有,则为常数。 ★★★反之,若已知可导函数在某个区间上单调递增,则,且不恒为零;可导函数在某个区间上单调递减,则,且不恒为零. 求单调性的步骤:确定函数的定义域(不可或缺,否则易致错);解不等式;确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”★隔开,不能用“”连结。
极值与最值 对于可导函数,在处取得极值,则. 最值定理:连续函数在闭区间上一定有最大最小值. 若在开区间有唯一的极值点,则是最值点。求极值步骤:确定函数的定义域(不可或缺,否则易致错);解不等式;检验的根的两侧的符号(一般通过列表),判断极大值,极小值,还是非极值点.求最值时,步骤在求极值的基础上,将各极值与端点处的函数值进行比较大小,切忌直接说某某就是最大或者最小。
恒成立问题 “”和“”,注意参数的取值中“=”能否取到。 例1 ,过的切线方程为 例2 设函数在处取得极值。
(1)求的值; (2)若对于任意的,都有成立,求c的取值范围。 (答:(1)a=-3,b=4;(2))例3 设函数 (1)求函数的单调区间、极值. (2)若当时,恒有,试确定a的取值范围.(答:(1)在(a,3a)上单调递增,在(-∞,a)和(3a,+∞)上单调递减;时,,时, (2)a的取值范围是)第二章 推理与证明分清概念:合情推理与演绎推理 综合法 分析法的步骤规范反证法 步骤:①提出反设;②推出矛盾 ;③肯定结论 数学归纳法 步骤规范:(1)归纳奠基;(2)递推步骤(最后一定说明当n=k+1时,结论成立,根据(1)(2),结论对于(或者其他)成立,必不可少)例1 用综合法和分析证明 例2 已知例3 ,求的值,由此猜想的通项公式,并证明。
(答:)第三章 数系的扩充与复数的引入复数的概念 三种表示形式:代数形式:,复平面内点Z(a,b),向量.区分实数,虚数,纯虚数,复数复数的四则运算及其几何意义复数的模例1 ()的充要条件是_________________________例2 设复数满足条件那么的最大值是( )(A)3 (B)4 (C) (D)例3 实数为何值时,复数. (1)为实数; (2)为虚数; (3)为纯虚数; (4)对应点在第二象限.例4.已知为实数.(1)若,求;(2)若,求,的值.。
5.必修2数学考点总结
高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。即 。
斜率反映直线与轴的倾斜程度。当 时, ; 当 时, ; 当 时, 不存在。
②过两点的直线的斜率公式: 注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程①点斜式: 直线斜率k,且过点 注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。②斜截式: ,直线斜率为k,直线在y轴上的截距为b③两点式: ( )直线两点 , ④截矩式: 其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、轴的截距分别为 。
⑤一般式: (A,B不全为0)注意:各式的适用范围 特殊的方程如:平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)(二)垂直直线系垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系: ,直线过定点 ;(ⅱ)过两条直线 , 的交点的直线系方程为 ( 为参数),其中直线 不在直线系中。(6)两直线平行与垂直当 , 时, ; 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点 相交交点坐标即方程组 的一组解。方程组无解 ; 方程组有无数解 与 重合(8)两点间距离公式:设 是平面直角坐标系中的两个点,则 (9)点到直线距离公式:一点 到直线 的距离 (10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。
二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程 ,圆心 ,半径为r;(2)一般方程 当 时,方程表示圆,此时圆心为 ,半径为 当 时,表示一个点; 当 时,方程不表示任何图形。
(3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ; (2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆 , 两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当 时两圆外离,此时有公切线四条;当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;当 时,两圆内切,连心线经过切点,只有一条公切线;当 时,两圆内含; 当 时,为同心圆。注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台: 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半。
6.高中数学必修二知识点总结
高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即 .斜率反映直线与轴的倾斜程度.当 时, ; 当 时, ; 当 时, 不存在.②过两点的直线的斜率公式: 注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式: 直线斜率k,且过点 注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式: ,直线斜率为k,直线在y轴上的截距为b③两点式: ( )直线两点 , ④截矩式: 其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、轴的截距分别为 .⑤一般式: (A,B不全为0)注意:各式的适用范围 特殊的方程如:平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)(二)垂直直线系垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系: ,直线过定点 ;(ⅱ)过两条直线 , 的交点的直线系方程为( 为参数),其中直线 不在直线系中.(6)两直线平行与垂直当 , 时,; 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组 的一组解.方程组无解 ; 方程组有无数解 与 重合(8)两点间距离公式:设 是平面直角坐标系中的两个点,则 (9)点到直线距离公式:一点 到直线 的距离 (10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程 ,圆心 ,半径为r;(2)一般方程 当 时,方程表示圆,此时圆心为 ,半径为 当 时,表示一个点; 当 时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ; (2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆 , 两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当 时两圆外离,此时有公切线四条;当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;当 时,两圆内切,连心线经过切点,只有一条公切线;当 时,两圆内含; 当 时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的辅助线一般为连圆心与切线或者连圆心与弦中点三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台: 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;。