高中数学知识体系

bdqnwqk2年前问题23

1.如何构建高中数学知识体系

数学不好提高成绩,就是因为内容多,题多,所以构建知识体系相当重要。怎么办呢?

第一,熟悉课本知识。到什么程度算是熟悉了呢?就是翻开目录,能说出每一章节内容,概念,公式,定理,重要例题。这是结果。到底怎么办怎么做?没好法儿,只有一条就是多看书。开始时,一节课看一章,越来越熟悉,后来就能一节课看一本书。因为熟悉的东西不用细看了,所以就快了。要永远记住的一条就是,记忆永远是学习的最重要环节和过程,不论什么方法不都是为了记住吗?只有记住了,才谈到理解。不要说记不住,没有记不住的东西。想一想,乘法口诀怎么那么熟练呢,因为当时你下的功夫多呀。

第二,课本掌握后,先是分散开来的知识,现在要综合起来,串起来。用什么串?那根金线是什么?在哪里?那金线是“一题多解”,用题解把不同内容联系起来。比如,证明三点共线,你有几种办法?可以用向量,可用距离,可以用斜率,可以用直线方程等等,往下就想,每种办法里面,是有什么什么条件才行的?到这,就考察你的第一步课本知识掌握的好与差了。

第三,高中数学,就是集合、向量做为工具,来研究函数和几何,你就这样简单想就行了。在战略上蔑视敌人。

第四,“闻过则喜”,做错的题对你来说比做对了更有益处。做错题,一定要弄明白哪里错了,原因是什么,写出准确的原因,写在题的边上。不要每次简单地写上“马虎”“公式没记清”等词句,这样词多了,你就得又回第一步去了。

第五,学会放弃,两不做。承认有不会做的题。老师也有不会的,要老师全会,他当年也不至于考师范院校了。太难的题,不做;太巧的题,不做。

第六,厚脸皮。不会就问,不论别人说什么,只要你不懂,你就问,哪怕很简单,要脸皮厚一点。当然,问问题也要有技巧,不要问概念问公式这类课本上有的只是你没记住的东西,要问的是题,具体的题目,当然是你做了以后才问,别老师问你这题已知什么求什么都不清楚就问,那样不仅没面子还会自己觉得白痴。有问题尽量问老师,有老师就问老师,别等老师走了问同桌,老师讲题一定比同学讲的好讲的多。还有就是,别老师在教室转了好几圈你也没事,他刚到办公室你就屁颠似的追去了。长点眼睛,别在他黒着脸生气时还不知趣就行了。哈哈,说的远了点。

第七,当读完题,你能记住题意,想到是什么内容,相关公式定理一下子就从脑海里闪现出来了,在这部份做错过多少题(当然不是要你想起个数来)跌过多少跟头,被老师白眼过几次,说明你差不多了。比如,立体几何题,读完题,脑子里要有图,边、角、及各种关系都清楚,当然具体数据可不用记住,但哪个是已知总得记住吧。

第八,第七条说是差不多了,那怎么才成功了完完全全好呢,只要你不上大学,在高中永远不行。这就是所谓“只缘身在此山中”。

吹了半天牛,关键还在于你是否用功了。用句名言吧:在科学上没有平坦的大道,只有不畏劳苦,沿着陡峭山路攀登的人,才有希望达到光辉的顶点。

2.高中数学知识整个体系脉络或框架

高考数学基础知识汇总第一部分 集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;(2) 注意:讨论的时候不要遗忘了 的情况。

(3) 第二部分 函数与导数1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、、等);⑨导数法3.复合函数的有关问题(1)复合函数定义域求法:① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:①首先将原函数 分解为基本函数:内函数 与外函数 ;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。注意:外函数 的定义域是内函数 的值域。

4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵ 是奇函数 ;⑶ 是偶函数 ;⑷奇函数 在原点有定义,则 ;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;6.函数的单调性⑴单调性的定义:① 在区间 上是增函数 当 时有 ;② 在区间 上是减函数 当 时有 ;⑵单调性的判定1 定义法:注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法(见2 (2));④图像法。

注:证明单调性主要用定义法和导数法。7.函数的周期性(1)周期性的定义:对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。

所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。

(2)三角函数的周期① ;② ;③ ;④ ;⑤ ;⑶函数周期的判定①定义法(试值) ②图像法 ③公式法(利用(2)中结论)⑷与周期有关的结论① 或 的周期为 ;② 的图象关于点 中心对称 周期为2 ;③ 的图象关于直线 轴对称 周期为2 ;④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;8.基本初等函数的图像与性质⑴幂函数: ( ;⑵指数函数: ;⑶对数函数: ;⑷正弦函数: ;⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;⑻其它常用函数:1 正比例函数: ;②反比例函数: ;特别的 2 函数 ;9.二次函数:⑴解析式:①一般式: ;②顶点式: , 为顶点;③零点式: 。⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。

⑶二次函数问题解决方法:①数形结合;②分类讨论。10.函数图象: ⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法⑵图象变换:1 平移变换:ⅰ ,2 ———“正左负右” ⅱ ———“正上负下”;3 伸缩变换:ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;4 对称变换:ⅰ ;ⅱ ;ⅲ ; ⅳ ;5 翻转变换:ⅰ ———右不动,右向左翻( 在 左侧图象去掉);ⅱ ———上不动,下向上翻(| |在 下面无图象);11.函数图象(曲线)对称性的证明(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;注:①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;12.函数零点的求法:⑴直接法(求 的根);⑵图象法;⑶二分法.13.导数 ⑴导数定义:f(x)在点x0处的导数记作 ;⑵常见函数的导数公式: ① ;② ;③ ;④ ;⑤ ;⑥ ;⑦ ;⑧ 。

⑶导数的四则运算法则: ⑷(理科)复合函数的导数: ⑸导数的应用: ①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?②利用导数判断函数单调性:ⅰ 是增函数;ⅱ 为减函数;ⅲ 为常数; ③利用导数求极值:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得极值。④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。

14.(理科)定积分 ⑴定积分的定义: ⑵定积分的性质:① ( 常数);② ;③ (其中 。⑶微积分基本定理(牛顿—莱布尼兹公式): ⑷定积分的应用:①求曲边梯形的面积: ; 3 求变速直线运动的路程: ;③求变力做功: 。

第三部分 三角函数、三角恒等变换与解三角形1.⑴角度制与弧度制的互化: 弧度 , 弧度, 弧度 ⑵弧长公式: ;扇形面。

3.高中数学课程框架有哪些主要的部分

高中数学课程62616964757a686964616fe4b893e5b19e31333365633866框架有哪些主要的部分

高中数学课程分必修和选修。必修课程由 5 个模块组成;选修课程有 4 个系列,其中系列 1、

系列 2 由若干模块组成,系列 3、系列 4 由若干专题组成;每个模快 2 学分(36 学时),每

个专题 1 学分(18 学时),每 2 个专题可组成 1 个模块。

一、必修课程

必修课程是每个学生都必须学习的数学内容,包括 5 个模块。

数学 1:集合,函数概念与基本初等函数 I(指数函数、对数函数、幂函数)。

数学 2:立体几何初步,平面解析几何初步。

数学 3:算法初步,统计, 概率。

数学 4:基本初等函数 II(三角函数)、平面上的向量,三角恒等变换。

数学 5:解三角形,数列,不等式。

二、选修课程

对于选修课程,学生可以根据自己的兴趣和对未来发展的愿望进行选择。选修课程由系列 1,

系列 2,系列 3,系列 4 等组成。

1、系列 1:由 2 个模块组成。

选修 1-1:常用逻辑用语、圆锥曲线与方程、导数及其初步应用。

选修 1-2:统计案例、推理与证明、数系扩充及复数的引入、框图。

2、系列 2:由 3 个模块组成。

选修 2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何。

选修 2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。

选修 2-3:计数原理、统计案例、概率。

3、系列 3:由 6 个专题组成。

选修 3-1:数学史选讲;

选修 3-2:信息安全与密码;

选修 3-3:球面上的几何;

选修 3-4:对称与群;

选修 3-5:欧拉公式与闭曲面分类;

选修 3-6:三等分角与数域扩充。

4、系列 4:由 10 个专题组成。

4.高中数学哪些知识点最难学最让人崩溃

高中数学重点有什么?该怎样攻克?高中数学重点内容还有很多.这些重点都是保持多年来的经验,他们分析过高考数学的题型,高中数学重点分为以下几个部分.高中数学知识一、函数和导数,函数可以说是整个高中数学的关键.在高中数学当中,每一个.板块都需要函数的引导.这是高中数学的一根纽带.在高考数学中,函数这些内容方只在30分左右,其中包括指数,对数,还有图像的变化.考察的内容,关键是以填空的形式,还有选择的形式,有的还有在解答题需要让你画一些图像来正确解答.二、数列,数列也是高中的重点内容.其实数列在初中的时候我们就经历过,我们就学过,只不过数列在高中这个阶段也是重要的一个版块儿.他可以让你算出钱一个数列的数值都是多少?还有等比数列,等差数列,比较好一点的就是这些不用画图,像你就可以算出来这一个板块还是比较简单,只要你记住一些死公式,往里边套就好.三、三角函数,三角函数也是高中数学重点内容.三角函数的考查一般就是在诱导公式还有俩差公式或者就是证明求解.还有图像的分析会让你.算出图像平移的变化,还有对称的变化,还有一些单调性,单调区间周期性.最后一个对函数的考查就是用实际例题几何的综合.四、几何函数综合,这种综合题也是高考比较常见的题型,通常也在二三十分左右梯形,也就是考察一些线性的规划,还有圆锥的定义圆锥,圆柱都是考察的重点.还会让你算一些面积,表面积一些体积.还有侧面积或者切去某块儿部分让你算出它的面积.五、向量,向量这个板块儿是必修科目当中最后一个重点板块儿.向量我们在刚开始接触的时候,我们会觉得它是一条射线.关键的就是它可以精确地算出圆柱和圆锥的位置关系还可以算出他们的加减法,但是简答都是会有一定的位置关系和数量,关键都是以这种计算为主.向量讲解其实高中数学重点就是在必修的里面.必修是每个高中生都必须学习的,不管是分不分文理科,他们都是会学习的.很多重点都是在必修里面,然而在选秀当中就是讲一些统计之类的问题,这都是我们在生活当中就会学到的,所以这些都不是重点,重中之重就是在必修的课本当中。

5.高中数学知识有哪些

高中数学必修一:主要是基本函数。

1.集合与函数的概念;2.基本初等函数:指数函数,对数函数,幂函数;3.函数的应用高中数学必修二:主要是空间几何。1.空间几何体;2.点、直线、平面之间的位置关系;3.直线与方程;4.圆与方程高中数学必修三:主要是概率和统计。

1.算法初步;2.统计;3.概率高中数学必修四:主要是三角函数和平面向量。1.三角函数;2.平面向量;3.三角恒等变换高中数学必修五:主要是数列和不等式。

1.解三角形;2.数列;3.不等式高中数学选修2-1:1.常用逻辑用语;2.圆锥曲线与方程; 3.空间向量与立体几何高中数学选修2-2:1.导数及其应用;2.推理与证明;3.数系的扩充与复数的引入高中数学选修2-3:1.计数原理;2.随机变量及其分布;3.统计案例。

高中数学知识体系