球体积知识

bdqnwqk2年前学者13

1.球体的体积怎么求

的体积公式: V球=4/3 π r^3 附:推导过程(可能会看不懂(涉及到了大学的微积分),就当学点知识吧,呵呵) 1.球的体积公式的推导 基本思想方法: 先用过球心 的平面截球 ,球被截面分成大小相等的两个半球,截面⊙ 叫做所得半球的底面. (l)第一步:分割. 用一组平行于底面的平面把半球切割成 层. (2)第二步:求近似和. 每层都是近似于圆柱形状的“小圆片”,我们用小圆柱形的体积近似代替“小圆片”的体积,它们的和就是半球体积的近似值. (3)第三步:由近似和转化为精确和. 当 无限增大时,半球的近似体积就趋向于精确体积. (具体过程见课本) 2.定理:半径是 的球的体积公式为: . 3.体积公式的应用 求球的体积只需一个条件,那就是球的半径.两个球的半径比的立方等于这两个球的体积比. 球内切于正方体,球的直径等于正方体的棱长;正方体内接于球,球的半径等于正方体棱长的 倍(即球体对角钱的一半);棱长为 的正四面体的内切球的半径为 ,外接球半径为 . 也可以用微积分来求,不过不好写。

2.球体的体积如何计算

球的体积公式: V球=4/3 π r^3

球的面积公式: S球=4π r^2

*****************************************************************

附:推导过程(可能会看不懂(涉及到了大学的微积分),就当学点知识吧,呵呵)

1.球的体积公式的推导

基本思想方法:

先用过球心 的平面截球 ,球被截面分成大小相等的两个半球,截面⊙ 叫做所得半球的底面.

(l)第一步:分割.

用一组平行于底面的平面把半球切割成 层.

(2)第二步:求近似和.

每层都是近似于圆柱形状的“小圆片”,我们用小圆柱形的体积近似代替“小圆片”的体积,它们的和就是半球体积的近似值.

(3)第三步:由近似和转化为精确和.

当 无限增大时,半球的近似体积就趋向于精确体积.

(具体过程见课本)

2.定理:半径是 的球的体积公式为: .

3.体积公式的应用

求球的体积只需一个条件,那就是球的半径.两个球的半径比的立方等于这两个球的体积比.

球内切于正方体,球的直径等于正方体的棱长;正方体内接于球,球的半径等于正方体棱长的 倍(即球体对角钱的一半);棱长为 的正四面体的内切球的半径为 ,外接球半径为 .

也可以用微积分来求,不过不好写

======================================================================

球体面积公式:

可用球的体积公式+微积分推导

定积分的应用:旋转面的面积。好多课本上都有,推导方法借助于曲线的弧长。

让圆y=√(R^2-x^2)绕x轴旋转,得到球体x^2+y^2+z^2≤R^2。求球的表面积。

以x为积分变量,积分限是[-R,R]。

在[-R,R]上任取一个子区间[x,x+△x],这一段圆弧绕x轴得到的球上部分的面积近似为2π*y*ds,ds是弧长。

所以球的表面积S=∫<-R,R>2π*y*√(1+y'^2)dx,整理一下即得到S=4πR^

3.如何用微积分知识推导球的体积公式

1、Disk Method——圆盘法:

2、Shell Method——球壳法:

3、General Method——一般法:

扩展资料:

微积分相关:

(1)定积分和不定积分

积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。

其中:

一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。

定积分和不定积分的定义迥然不同,定积分是求图形的面积,即是求微元元素的累加和,而不定积分则是求其原函数,而牛顿和莱布尼茨则使两者产生了紧密的联系(详见牛顿-莱布尼茨公式)。

(2)常微分方程与偏微分方程

含自变量、未知函数和它的微商(或偏微商)的方程称为常(或偏)微分方程。未知函数为一元函数的微分方程,称为常微分方程。未知函数为多元函,从而出现多元函数的偏导数的方程,称为偏微分方程。

参考资料来源:百度百科 - 微积分

参考资料来源:百度百科 - 球体

球体积知识

标签: 球体知识