log知识点
1.与log有关的公式知识点
当a>0且a≠1时,M>0,N>0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M) (n∈R) (4)log(a^n)(M)=1/nlog(a)(M)(n∈R) (5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1) (6)a^(log(b)n)=n^(log(b)a) 证明: 设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a) (7)对数恒等式:a^log(a)N=N; log(a)a^b=b (8)由幂的对数的运算性质可得(推导公式) 1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M 2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M 3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M 4.log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M , log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(n/m)log(a)M 5.log(a)b*log(b)c*log(c)a=1。
2.对数函数log 的各种公式
1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。
2、因为a^b=a^b 令t=a^b 所以a^b=t,b=log(a)(t)=log(a)(a^b) 3、MN=M*N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]*a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n) 换底公式的推导: 设e^x=b^m,e^y=a^n 则log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n) 由基本性质4可得 log(a^n)(b^m) = [m*ln(b)]÷[n*ln(a)] = (m÷n)*{[ln(b)]÷[ln(a)]} 再由换底公式 log(a^n)(b^m)=m÷n*[log(a)(b)]。
3.高中对数的知识点,需要详细的,越详细越好,谢谢
这儿有7个:
当a>0且a≠1时,M>0,N>0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M) (n∈R) (4)log(a^n)(M)=1/nlog(a)(M)(n∈R) (5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1) (6)a^(log(b)n)=n^(log(b)a) 证明: 设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a) (7)对数恒等式:a^log(a)N=N; log(a)a^b=b (8)由幂的对数的运算性质可得(推导公式) 1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M 2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M 3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M 4.log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M , log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(n/m)log(a)M 5.log(a)b*log(b)c*log(c)a=1
对数与指数之间的关系
当a>0且a≠1时,a^x=N x=㏒(a)N
4.求高一数学 有关log的公式
对数的运算法则及变式法则若a^b=c,(a>0,a≠1),则记作b=log(a)c.把b=log(a)c代回去,便得a^log(a)c=c.(此式很有用)log(a)mn=log(a)m+log(a)nlog(a)(m/n)=log(a)m-log(a)nlog(a)(m^n)=nlog(a)mlog(a)m=log(b)m/log(b)a.(换底公式)log(a^n)(m^n)=log(a)m此式由换底公式演化而来:log(a^n)(m^n)=log(a)(m^n)/log(a)(a^n)=nlog(a)m/nlog(a)a乏乏催何诎蛊挫坍旦开=log(a)m。
5.对数的公式都有哪些
性质 ①loga(1)=0; ②loga(a)=1; ③负数与零无对数.运算法则 ①loga(MN)=logaM+logaN; ②loga(M/N)=logaM-logaN; ③对logaM中M的n次方有=nlogaM; 如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底。
定义: 若a^n=b(a>0且a≠1) 则n=log(a)(b) 基本性质:1、a^(log(a)(b))=b 2、log(a)(MN)=log(a)(M)+log(a)(N); 3、log(a)(M÷N)=log(a)(M)-log(a)(N); 4、log(a)(M^n)=nlog(a)(M) 5、log(a^n)M=1/nlog(a)(M) 推导: 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。 2、MN=M*N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]*a^[log(a)(N)] ,由指数的性质a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} ,又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3、与(2)类似处理 M/N=M÷N 由基本性质1(换掉M和N)a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)], 由指数的性质a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} ,又因为指数函数是单调函数,所以log(a)(M÷N) = log(a)(M) - log(a)(N) 4、与(2)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n ,由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n},又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n) 换底公式的推导: 设e^x=b^m,e^y=a^n 则log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n) 由基本性质4可得 log(a^n)(b^m) = [m*ln(b)]÷[n*ln(a)] = (m÷n)*{[ln(b)]÷[ln(a)]} ,再由换底公式 log(a^n)(b^m)=m÷n*[log(a)(b)]换底公式 设x=a^m,a=b^n,则x=(b^n)^m=b^(mn)……①对①取以a为底的对数,有:log(a, x)=m……②对①取以b为底的对数,有:log(b, x)=mn……③③/②,得:log(b, x)/log(a, x)=n=log(b, a)∴log(a, x)=log(b, x)/log(b, a)注:log(a, x)表示以a为底x的对数。
换底公式拓展:以e为底数和以a为底数的公式代换:logae=1/(lna) 推导公式 log(1/a)(1/b)=loga(b) loga(b)*logb(a)=1求导数 (logax)'=1/xlna 特殊的即a=e时有 (logex)'=(lnx)'=1/x。
6.我想找一个初中数学关于Log的知识点,我现在已经全忘 了,希望大家
1.如果 a^x=N (a>0,且 a≠1),那么数 x 叫做以 a 为底 N 的对数,记作 x=logaN ,其中 a 叫做
对数的底数,N 叫做真数。
2.以 10 为底的对数叫做常用对数,并把 log(10)N 记为 lgN 。以无理数e=2.71828…为底数的对数称为自然对数,并把 logeN 记为 lnN 。
3.指对互换:当a>0,a≠1时,a^x=N 等价于 x=logaN 。
4.负数和零没有对数。
5. loga1=0 ,logaA=1 。
6.如果 a>0,且 a≠1 ,M>0 ,N>0 ,那么:
(1)loga(M·N)= logaM + logaN ;
(2)loga(M/N)= logaM - logaN ;
(3)logaM^n=nlogaM (n∈R)。
7.log(a)b=log(c)b/log(c)a(a>0,且a≠1 ;c>0,且c≠1;b>0)
7.关于log的常用公式
用^表示乘方,用log(a)(b)表示以a为底,b的对数 *表示乘号,/表示除号 定义式: 若a^n=b(a>0且a≠1) 则n=log(a)(b) 基本性质: 1.a^(log(a)(b))=b 2.log(a)(MN)=log(a)(M)+log(a)(N); 3.log(a)(M/N)=log(a)(M)-log(a)(N); 4.log(a)(M^n)=nlog(a)(M) 推导 1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b) 2. MN=M*N 由基本性质1(换掉M和N) a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN)=log(a)(M)+log(a)(N) 3.与2类似处理 MN=M/N 由基本性质1(换掉M和N) a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)] 由指数的性质 a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M/N)=log(a)(M)-log(a)(N) 4.与2类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)]={a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)]=a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 其他性质: 性质一:换底公式 log(a)(N)=log(b)(N)/log(b)(a) 推导如下 N=a^[log(a)(N)] a=b^[log(b)(a)] 综合两式可得 N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]} 又因为N=b^[log(b)(N)] 所以 b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]} 所以 log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的} 所以log(a)(N)=log(b)(N)/log(b)(a) 性质二:(不知道什么名字) log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下 由换底公式[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(a^n)/ln(b^n) 由基本性质4可得 log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]} 再由换底公式 log(a^n)(b^m)=m/n*[log(a)(b)]。
8.高中时关于log的一些公式
对数函数的常用简略表达方式: (1)log(a)(b)=log(a)(b) (a为底数) (2)lg(b)=log(10)(b) (10为底数) (3)ln(b)=log(e)(b) (e为底数) 对数函数的运算性质: 如果a〉0,且a不等于1,M>0,N>0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M) (n属于R) (4)log(a^k)(M^n)=(n/k)log(a)(M) (n属于R) (5) a^log(a)(N)=N。